

MATHEMATICS

PAST PAPER BOOKLET 2020

Mathematics Past Paper Revision By Topic

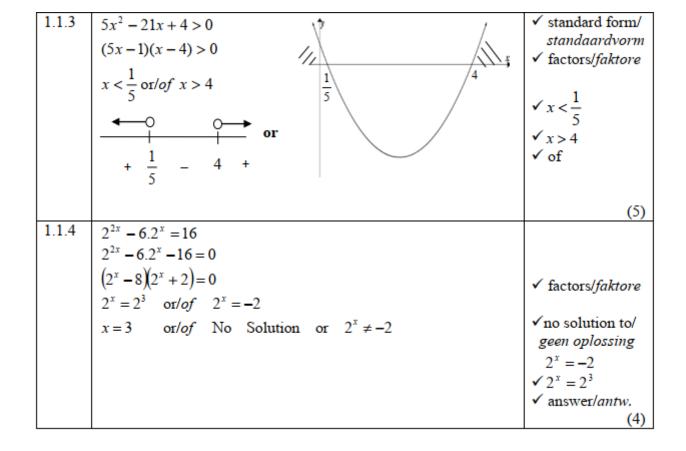
i Algebra, Equations & inequalities		- 1
Patterns & Sequence)	19
Functions & Graph		41
Finance, Growth & Deca	ļ	64
B Differential Calculu	}	73
) Probabili)	02

Question 1 November 2014

1.1.1	(x-2)(4+x)=0	
	x = 2 or $x = -4$	$\checkmark x = 2$
		✓ x = -4
		(2)
1.1.2	$3x^2 - 2x - 14 = 0$	✓ standard
	$-b+\sqrt{b^2-4ac}$	form/standaardvorm
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
		✓ substitution into
	$x = \frac{2 \pm \sqrt{(-2)^2 - 4(3)(-14)}}{2(3)}$	correct formula/
	$x = {2(3)}$	substitusie in
		korrekte formule
	$=\frac{2\pm\sqrt{172}}{6}$	
	0	
	x = 2.52 or/of x = -1.85	✓✓ answers/
		antwoorde
		(4)
	OR/OF	
		1
	$x^2 - \frac{2}{3}x + \frac{1}{9} = \frac{14}{3} + \frac{1}{9}$	\checkmark for adding $\frac{1}{9}$ on
	3 9 3 9	9,
	$(1)^2$ 43	both sides/tel $\frac{1}{2}$
	$\left(x - \frac{1}{3}\right)^2 = \frac{43}{9}$	9
		by aan beide kante
	$x - \frac{1}{3} = \pm \frac{\sqrt{43}}{3}$	
	3 - 3	_
	$1 \pm \sqrt{43}$	$\checkmark x = \frac{1 \pm \sqrt{43}}{3}$
	$\therefore x = \frac{1 \pm \sqrt{43}}{3}$	3
	x = 2.52 or/of $x = -1.85$	
	x = 2,32 01/03 $x = -1,63$	✓ answers
		(4)
1 1 2	2×+2 - 2× 22	

		\'7
1.1.3	$2^{x+2} + 2^x = 20$ $2^x (2^2 + 1) = 20$ $2^x = \frac{20}{5}$ $2^x = 2^2$ $\therefore x = 2$	✓ common factor/gemeen. faktor ✓ simplification/ vereenvoudiging ✓ answer/antwoord (3)
	OR/OF $2^{x}.2^{2} + 2^{x} = 2^{2}.5$ $2^{x}(2^{2} + 1) = 2^{2}.5$ $2^{x}.5 = 2^{2}.5$ $\therefore x = 2$ OR/OF	✓ common factor/gemeen. faktor ✓ simplification/ vereenvoudiging ✓ answer/antwoord (3)

l 0	$4.2^x + 2^x = 20$	
	$5.2^x = 20$	$\checkmark 5.2^x = 20$
	$2^x = 4 = 2^2$	$\checkmark 3.2 = 20$ $\checkmark 2^x = 4$
	$\therefore x = 2$	✓answer/antwoord
1.2		(3)
1.2	x = 2y + 3(1)	
	$3x^2 - 5xy = 24 + 16y \qquad \dots (2)$	
	(1) in (2):	
	$3(2y+3)^2 - 5(2y+3)y = 24+16y$	
	$3(4y^2 + 12y + 9) - 10y^2 - 15y = 24 + 16y$	✓ substitution/substitusie
	$12y^2 + 36y + 27 - 10y^2 - 15y - 24 - 16y = 0$	✓ simplification/
	$2v^2 + 5v + 3 = 0$	vereenvoudiging
	(2y+3)(y+1)=0	✓ standard form/
		standaardvorm ✓ factorisation/faktorisering
	$y = -\frac{3}{2} \qquad \text{or} \qquad y = -1$	✓ y-values/y-waardes
	$\therefore x = 2\left(-\frac{3}{2}\right) + 3$ or $x = 2(-1) + 3$	
	x = 0 or $x = 1$	✓x-values/x-waardes
	$(0; -\frac{3}{2})$ $(1; -1)$	(6)
	OR/OF	
	$y = \frac{x-3}{2}$	
	$3x^2 - 5x\left(\frac{x-3}{2}\right) = 24 + 16\left(\frac{x-3}{2}\right)$	✓ substitution/substitusie
		- suosittution suosittusie
	$3x^2 - \frac{5x^2 - 15x}{2} = 24 + \frac{16x - 48}{2}$	
	$\times 2:6x^2 - 5x^2 + 15x = 48 + 16x - 48$	✓ simplification/ vereenvoudiging
	$x^2 - x = 0$	✓ standard form / standard
	x(x-1)=0	vorm
	x = 0 or $x = 1$	✓ factors/faktore ✓ x- values/x- waardes
	$y = -\frac{3}{2}$ or $y = -1$	- A- Values/A- Waaraes
	$y = -\frac{1}{2}$ or $y = -1$	✓ y-values/y-waardes
		(6)


$(x-1)(x-2) < 6$ $x^{2} - 3x + 2 < 6$ $x^{2} - 3x - 4 < 0$ $(x+1)(x-4) < 0$	✓ standard form/ standaardvorm ✓ factorisation/faktorisering
OR/ OF -1 < $x < 4$ or $x \in (-1; 4)$	✓ critical values in the context of inequality / kritiese waardes in die konteks van die ongelykheid ✓ notation/notasie (4)
-k-4 > 0	$\checkmark -k-4 \ge 0$
	✓ answer/antwoord
··· — ·	(2)
	$x^{2} - 3x + 2 < 6$ $x^{2} - 3x - 4 < 0$ $(x+1)(x-4) < 0$ $OR/$ OF -1 4 OF

Question 1 Feb March 2015

1.1.1	(x+4)(x-5) = 0 $\therefore x = -4 \text{ or } x = 5$	✓ factors/faktore
	$\therefore x = -4 \text{ or } x = 5$	✓ answers/antwoorde
		(2)
1.1.2	$2x^2 - 11x + 7 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	✓ substitution into correct formula/substitusie in
	$=\frac{-(-11)\pm\sqrt{(-11)^2-4(2)(7)}}{2(2)}$	korrekte formule ✓4,77
	= 4,77 or 0,73	✓0,73
		(3)
	OR/OF	

Algebra, Equations and Inequalities Memo

	$2x^{2} - 11x + 7 = 0$ $x^{2} - \frac{11}{2}x + \frac{7}{2} = 0$ $x^{2} - \frac{11}{2}x + \left(\frac{1}{2} \cdot \frac{11}{2}\right)^{2} + \frac{7}{2} - \left(\frac{1}{2} \cdot \frac{11}{2}\right)^{2} = 0$ $\left(x - \frac{11}{4}\right)^{2} + \frac{7}{2} - \frac{121}{16} = 0$	✓ correct completion of the square/korrekte voltooiing van die vierkant	
	$\left(x - \frac{11}{4}\right)^2 = \frac{121 - 56}{16}$ $x - \frac{11}{4} = \pm \sqrt{\frac{65}{16}}$ $\therefore x = \frac{11}{4} + \frac{\sqrt{65}}{4} \text{or} x = \frac{11}{4} - \frac{\sqrt{65}}{4}$ $x = 4,77 x = 0,73$	✓4,77 ✓0,73	(3)

4

1.2		dust and in the
1.2	y = 2x - 1	✓y the subject/ die onderwerp
	$x^{2} - x(2x - 1) + (2x - 1)^{2} = 7$	are onaer werp
	$x^2 - 2x^2 + x + 4x^2 - 4x + 1 = 7$	✓substitution/substitusie
	$3x^2 - 3x - 6 = 0$	✓ simplification/vereenv.
	$x^2 - x - 2 = 0$	
	(x-2)(x+1)=0	✓ factors/faktore
	x = 2 or/of $x = -1$	✓x-values/waardes
	y = 3 or/of $y = -3$	✓y-values/waardes
	OR/OF	(6)
	$x = \frac{y}{2} + \frac{1}{2}$	✓ x the subject/
	2 2	die onderwerp
	$\left(\frac{y}{2} + \frac{1}{2}\right)^2 - \left(\frac{y}{2} + \frac{1}{2}\right)y + y^2 = 7$	✓ substitution/substitusie
	$\frac{y^2}{4} + \frac{y}{2} + \frac{1}{4} - \frac{y^2}{2} - \frac{y}{2} + y^2 = 7$	✓ simplification/vereenv.
	$\begin{vmatrix} 4 & 2 & 4 & 2 & 2 \\ \times 4 : y^2 + 2y + 1 - 2y^2 - 2y + 4y^2 - 28 = 0 \end{vmatrix}$	
	$3v^2 - 27 = 0$	
	$y^2 - 9 = 0$	
	(y-3)(y+3) = 0	✓ factors/faktore
	$\therefore y = 3$ or $y = -3$, , ,
		✓y-values/waardes
	$\therefore x = \frac{3}{2} + \frac{1}{2} \qquad x = \frac{-3}{2} + \frac{1}{2}$	
	x=2 $x=-1$	✓x-values/waardes
		(6)
1.3.1	k = -2 or/of $k = 2$	✓✓ answer/antw.
122	1_ 2	(2)
1.3.2	k = -3	√-3 (1)
1.4	$7^{2014} - 7^{2012}$	(1)
	$\sqrt{\frac{7}{12}}$	
		72012(72 4)
	$=\sqrt{\frac{7^{2012}(7^2-1)}{12}}$	$\sqrt{\frac{7^{2012}(7^2-1)}{12}}$
	·	12
	$=\sqrt{\frac{7^{2012}.48}{12}}$	
	$=\sqrt{7^{2012}.4}$	$\sqrt{7^{2012}.4}$
	$= \sqrt{7}$.4 = 2.7^{1006}	✓ 2.7 ¹⁰⁰⁶ ✓
	a = 2; $b = 1006$	OR/OF
	u - 2, v - 1000	$\checkmark a = 2$
		✓b = 1006
		(4)
		[27]

Question 1 November 2015

1.1.1	$x^{2} - 9x + 20 = 0$ $(x - 4)(x - 5) = 0$	√ factors
1.1.2	x = 4 or $x = 53x^2 + 5x - 4 = 0$	$\checkmark x = 4$ $\checkmark x = 5$ (3) \checkmark standard form
	$x = \frac{-5 \pm \sqrt{(5)^2 - 4(3)(-4)}}{2(3)}$	✓substitution into correct formula
	$x = \frac{-5 \pm \sqrt{73}}{6}$ $x = -2,26 \text{ or } x = 0,59$ OR/OF	✓✓answers (4)
	$x^{2} + \frac{5}{3}x + \frac{25}{36} = \frac{4}{3} + \frac{25}{36}$ $\left(x + \frac{5}{6}\right)^{2} = \frac{73}{36}$	√for adding $\frac{25}{36}$ on both sides
	$x + \frac{5}{6} = \pm \frac{\sqrt{73}}{6}$ $x = \frac{-5 \pm \sqrt{73}}{6}$ $x = -2,26 \text{or} x = 0,59$	$\checkmark x = \frac{-5 \pm \sqrt{73}}{6}$ $\checkmark \checkmark \text{answers}$
1.1.3	$2x^{\frac{-5}{3}} = 64$ $x^{\frac{-5}{3}} = 32$ $x = (2^{5})^{\frac{-3}{5}}$ $x = 2^{-3} \text{ or } \frac{1}{8} \text{ or } 0,125$ OR/OF	√dividing both sides by 2 √32 = 2 ⁵ or 64 = 2 ⁶ √raising RHS to -3 √answer (4)
	ORIOF	

		г
	$2x^{\frac{-5}{3}} = 64$ $x^{\frac{-5}{3}} = 32$ $x = (32)^{\frac{-3}{5}}$ $x = \sqrt[5]{32^{-3}}$ $x = 2^{-3} \text{ or } \frac{1}{8} \text{ or } 0,125$ OR/OF	✓ dividing both sides by 2 ✓ raising RHS to -3 ✓ ⁵ √32 ⁻³ ✓ answer (4)
	$\left(2x^{\frac{-5}{3}}\right)^{\frac{-3}{5}} = 64^{\frac{-3}{5}}$ $0,659x = 0,0825$ $x = 0,125$ OR/OF $x^{\frac{-5}{3}} = 32$ $\frac{-5}{3}\log x = \log 32$	✓ raising both sides to -3 ✓ 0,659 and 0,0825 ✓ dividing both sides by 0,659 ✓ answer (4) ✓ dividing both sides by 2 ✓ logs on both sides
	$\log x = \frac{3}{-5} \log 32$ $\log x = -0.903$ $x = 10^{-0.903}$ $= 0.125 \text{ or } \frac{1}{8}$	$✓ \log x = -0.903$ ✓ answer (4)
1.1.4	$\sqrt{2-x} = x - 2$ $2 - x = (x - 2)^{2}$ $2 - x = x^{2} - 4x + 4$ $x^{2} - 3x + 2 = 0$ $(x - 1)(x - 2) = 0$ $x = 1 \text{ or } x = 2$ $\text{if } x = 1, \sqrt{2-x} = 1 \text{ and } x - 2 = -1$ $x = 2 \text{ only}$	✓ squaring both sides ✓ factors ✓ $x = 1$ or $x = 2$ ✓ $x = 2$ only (4)
	OR/OF	

	$\sqrt{2-x} = x - 2$	✓squaring both
	$2-x=(x-2)^2$	sides
	$2 - x = (2 - x)^2$	$\sqrt{2-x}=1 \text{ or } 2-x=0$
	2-x=1 or $2-x=0$	
	x = 1 or $x = 2$	$\checkmark x = 1 \text{ or } x = 2$
	if $x = 1$, $\sqrt{2 - x} = 1$ and $x - 2 = -1$	
	x = 2 only	
		$\checkmark x = 2$ only
	OR/OF	(4)
	$\sqrt{2-x} = x - 2$	
		(2 > 0
	$2 - x \ge 0$ and $x - 2 \ge 0$	√2-x≥0 √x-2≥0
		▼ x-2≥0
	$x \le 2$ and $x \ge 2$	
		$\checkmark x \le 2 \text{ and } x \ge 2$
	x = 2 only	
		$\checkmark x = 2$ (4)
1.1.5	$x^2 + 7x < 0$	(4)
	x(x+7) < 0	√factors
	+ - +	
	OR	
	OR/ OF	
		✓✓inequality or
	$-7 < x < 0$ OR/OF $x \in (-7, 0)$	interval
		(3)
1.2	The square of any number is always positive or zero	
1.2	So for the sum of two squares to be zero, both squares must be	
	zero, i.e.	
	Die kwadraat van enige getal is altyd positief of nul. Vir die som	
	van twee kwadrate om nul te wees, moet beide die kwadrate nul wees, d.i.	
		/3v_v=0
	(3x-y) = 0 and en (x-3) = 0	$\sqrt{x-5}=0$
	3x - y = 0 and/en x - 5 = 0	$ \begin{array}{l} \sqrt{3}x - y = 0 \\ \sqrt{x - 5} = 0 \end{array} $ $ \begin{array}{l} \sqrt{x} = 5 \\ \sqrt{y} = 15 \end{array} $
	3x-y=0 and en x-j=0	✓ x = 5
	x = 5	
	3(5) - y = 0	✓ y = 15

y = 15

•		9
		3
•	•	-

$$x^2 + x = k$$

$$x^2 + x - k = 0$$

$$\Delta < 0$$

$$b^2 - 4ac < 0$$

$$1^2 - 4(1)(-k) < 0$$

$$1+4k<0$$

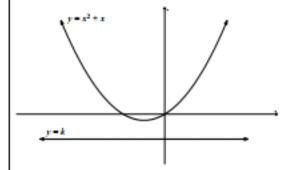
$$k < \frac{-1}{4}$$

OR/OF

$$x^2 + x = k$$

$$x^2 + x + \frac{1}{4} = k + \frac{1}{4}$$

$$\left(x + \frac{1}{2}\right)^2 = k + \frac{1}{4}$$


for nonreal roots $k + \frac{1}{4} < 0$

$$k < \frac{-1}{4}$$

$$+\frac{1}{4} < 0$$

OR/OF

Consider the functions $y = x^2 + x$ and y = kBeskou die funksies $y = x^2 + x$ en y = k

Turning point of Draaipunt van $y = x^2 + x$ is $\left(\frac{-1}{2}; \frac{-1}{4}\right)$

 $x^2 + x = k$ does not have real roots when the line y = k does not intersect $y = x^2 + x$.

 $x^2 + x = k$ het geen reële wortels as die lyn y = k nie met $y = x^2 + x$ sny nie.

Therefore $k < \frac{-1}{4}$

✓standard form

$$\checkmark 1^2 - 4(1)(-k)$$

$$\sqrt{k} < \frac{-1}{4}$$

(4)

✓adds $\frac{1}{4}$ to both

$$\sqrt{\left(x+\frac{1}{2}\right)^2} = k + \frac{1}{4}$$

$$\sqrt{k} + \frac{1}{4} < 0$$

$$\checkmark k < \frac{-1}{4}$$

(4)

✓sketch or explanation

$$x = -\frac{1}{2}$$

$$\checkmark y = -\frac{1}{4}$$

$$\checkmark k < \frac{-1}{4}$$

(4) [26] Question 1 Feb March 2016

1.1.1	$x^{2} - x - 12 = 0$ $(x - 4)(x + 3) = 0$	✓factors
	x = 4 or x = -3	✓✓ answers
	OR/OF	(3)
	$x^2 - x - 12 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	✓ substitution into formula
	$= \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-12)}}{2(1)}$ = 4 or -3	✓✓ answers (3)
1.1.2	x(x+3)-1=0	
	$x^2 + 3x - 1 = 0$	✓standard form
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$=\frac{-3\pm\sqrt{3^2-4(1)(-1)}}{2(1)}$	✓ substitution into correct formula
	$=\frac{-3\pm\sqrt{13}}{2}$	✓ answer
1.1.3	x(4-x) < 0 $x < 0 or x > 4$	✓ x < 0 ✓ x > 4 ✓ or
	OR/OF	(3)
	x(4-x) < 0 x(x-4) > 0 OR/OF $x(4-x) < 0$ $x(4-x) < 0$ $x(x-4) > 0$	✓ x < 0 ✓ x > 4 ✓ or
	x < 0 or $x > 4$	(3)

1.1.4
$$x = \frac{a^2 + a - 2}{a - 1}$$

$$= \frac{(a + 2)(a - 1)}{a - 1}$$

$$= a + 2$$

$$= 888 888 888 890$$

$$(2)$$

$$x = \frac{a^2 + a - 2}{a - 1}$$

$$= \frac{(a + 2)(a - 1)}{a - 1}$$

$$= a + 2$$

$$= 888 888 888 890$$

$$(2)$$

1.2	y + 7 = 2x	
1.2	y = 2x - 7(1)	
	$x^2 - xy + 3y^2 = 15$	$\checkmark y = 2x - 7$
	substitute (1) in (2):	
	$x^2 - x(2x - 7) + 3(2x - 7)^2 = 15$	✓ substitution
	$x^2 - 2x^2 + 7x + 3(4x^2 - 28x + 49) = 15$	
	$x^2 - 2x^2 + 7x + 12x^2 - 84x + 147 - 15 = 0$	
	$11x^2 - 77x + 132 = 0$	✓standard form
	$x^2 - 7x + 12 = 0$	√factorisation
	(x-3)(x-4)=0	, ,
	x = 3 or $x = 4$	✓x-values
	y = 2(3) - 7 $y = 2(4) - 7$	
	y = -1 $y = 1$	✓y-values
	OR/OF	(6)
	y + 7 = 2x	
	$x = \frac{y+7}{2}$ (1)	$\checkmark x = \frac{y+7}{2}$
	$x^2 - xy + 3y^2 = 15$ (2)	
	substitute (1) in (2):	
		✓ substitution
	$\left(\frac{y+7}{2}\right)^2 - \left(\frac{y+7}{2}\right)y + 3y^2 = 15$	
	$\frac{y^2 + 14y + 49}{4} - \frac{y^2 + 7y}{2} + 3y^2 = 15$	
	$y^2 + 14y + 49 - 2y^2 - 14y + 12y^2 - 60 = 0$	
	$11y^2 - 11 = 0$	✓standard form
	$y^2 - 1 = 0$	√factorisation
	(y-1)(y+1) = 0	▼ factorisation
	y = -1 $y = 1$	✓y-values
	$x = \frac{-1+7}{2}$ $x = \frac{1+7}{2}$	
	2 2	✓x-values
	x = 3 $x = 4$	(6)

1.3
$$y = x + \frac{1}{x}$$

$$xy = x^{2} + 1$$

$$x^{2} - xy + 1 = 0$$
Since x is real, this equation has real roots./Omdat x reëel is, het die vergelyking reële wortels.
$$\Delta \ge 0$$

$$y^{2} - 4 \ge 0$$

$$(y - 2)(y + 2) \ge 0$$

$$\sqrt{y^{2} - 4}$$

$$\sqrt{y^{2} - 4}$$

$$\sqrt{factors}$$

$$\sqrt{y^{2} - 4}$$

$$\sqrt{factors}$$

$$\sqrt{y} \le -2$$

$$\sqrt{y} \le 2$$

$$\sqrt{y} \le -2$$

$$\sqrt{y} \ge 2$$
(6)
[23]

Question 1

May June 2016

1.1.1	$4x^2 - 25 = 0$	✓✓ factors	
	(2x-5)(2x+5)=0	Tactors	
	$x = \frac{5}{2} \text{or/of} x = -\frac{5}{2}$	✓ answers	(2)
	OR/OF		(3)
	$4x^2 = 25$		
	$x^2 = \frac{25}{4}$	1 2 25	
	$x = \pm \sqrt{\frac{25}{4}}$	4	
	$x = \frac{5}{2} \text{or/of} x = -\frac{5}{2}$	$\checkmark x^2 = \frac{25}{4}$ $\checkmark x = \pm \sqrt{\frac{25}{4}}$	
		✓ answer	(3)
1.1.2	$x^2 - 5x - 2 = 0$		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$=\frac{-(-5)\pm\sqrt{(-5)^2-4(1)(-2)}}{2(1)}$	✓ correct substitution into correct formula	
	$=\frac{5\pm\sqrt{33}}{2}$	✓ answer ✓ answer	
	x = 5,37 or/of $x = -0,37$ OR/OF		(3)

		$x^2 - 5x + \frac{25}{4} = 2 + \frac{25}{4}$	✓ for adding $\frac{25}{4}$ on both
		$\left(x - \frac{5}{2}\right)^2 = \frac{33}{4}$	sides
		$x - \frac{5}{2} = \pm \frac{\sqrt{33}}{2}$	
		$x = \frac{5 \pm \sqrt{33}}{2}$	
		x = -0.37 or $x = 5.37$	✓answer ✓answer (3)
	1.1.3	$(2-x)(x+4) \ge 0$	
- 1			

- √ method ✓ critical values in context of inequality $-4 \le x \le 2$ **OR / OF** $x \in [-4; 2]$ √inequality or interval (3)OR / OF $(2-x)(x+4) \ge 0$ ✓ change of inequality $(x-2)(x+4) \le 0$ ✓ critical values in context of inequality √inequality or interval $-4 \le x \le 2$ **OR / OF** $x \in [-4, 2]$ (3)
- $-4 \le x \le 2 \quad \text{OR / OF} \quad x \in [-4; 2]$ 1.1.4 $x 3x^{\frac{1}{2}} 4 = 0$ $\left(x^{\frac{1}{2}} 4\right)\left(x^{\frac{1}{2}} + 1\right) = 0$ $x^{\frac{1}{2}} = 4 \quad \text{or} \quad x^{\frac{1}{2}} = -1$ $x = 16 \quad \text{N/A}$ $x = 3x^{\frac{1}{2}} 4 = 0$ $x = 16 \quad \text{N/A}$ $x = 16 \quad \text{N/A}$ x

(k-4)(k+1)=0

OR/OF

(5)

1	l i	I	ı
	$x - 3x^{\frac{1}{2}} = 4$		
		✓ isolating $3\sqrt{x}$ or $3x^{\frac{1}{2}}$	
	$9x = x^2 - 8x + 16$ $x \ge 4$ and $x \ge 0$	✓ standard form	
	$x^2 - 17x + 16 = 0$		
	(x-1)(x-16)=0	✓ factors ✓ answers	
	x = 1 or $x = 16$	✓ selection	
	N/A	(5))
1.2	y = 2x + 1	✓ y subject of formula	
	$x^{2} - 3x - 4 - (2x + 1) = (2x + 1)^{2}$	✓ substitution	
	$x^2 - 3x - 4 - 2x - 1 = 4x^2 + 4x + 1$		
	$3x^2 + 9x + 6 = 0$		
	$x^2 + 3x + 2 = 0$	✓ standard form	
	(x+2)(x+1) = 0	✓ factors	
	x = -2 or $x = -1$		
	If $x = -2$, then $y = -3$	✓ values of x	
	If $x = -1$, then $y = -1$	✓ values of y	
		(6))
	OR/OF		
	$x = \frac{y-1}{2}$		
	$\left(\frac{y-1}{2}\right)^2 - 3\left(\frac{y-1}{2}\right) - 4 - y = y^2$	✓ x subject of formula	
	$\frac{y^2 - 2y + 1}{4} - 3\left(\frac{y - 1}{2}\right) - 4 - y = y^2$	✓ substitution	
	$y^2 - 2y + 1 - 6y + 6 - 16 - 4y = 4y^2$		
	$3y^2 + 12y + 9 = 0$		
	$y^2 + 4y + 3 = 0$		
	(y+3)(y+1)=0	✓ standard form	
	y = -3 or $y = -1$	✓ factors	
	If $y = -3$, then $x = -2$	✓ values of y	
	If $y = -1$, then $x = -1$	✓ values of x	
		values of x)
1.3.1	$2x+1 \ge 0$		\dashv
	$x \ge -\frac{1}{2}$		
	$\lambda = -\frac{1}{2}$	✓ answer (1	,
	OR/OF	(-	
	$\left[-\frac{1}{2};\infty\right]$	✓ answer	
	L 2 /	(1))

1.3.2
$$f(x) = 2x - 1$$

$$\sqrt{2x + 1} = 2x - 1$$
Restrictions/Beperkings:
$$\sqrt{2x + 1} = 2x - 1$$

$$2x + 1 = 4x^2 - 4x + 1$$

$$4x^2 - 6x = 0$$

$$x(4x - 6) = 0$$

$$x = \frac{3}{2} \text{ or } x = 0$$

$$\therefore x = \frac{3}{2}$$
Restrictions/Beperkings:
$$\sqrt{2x + 1} = 2x - 1$$

$$\sqrt{3x + 1} = 2x - 1$$

$$\sqrt{$$

Question 1 November 2016

1.1.1	x(x-7)=0	
	x = 0 or $x = 7$	$\checkmark x = 0$
		✓ x = 7
		(2)
1.1.2	$x^2 - 6x + 2 = 0$	
	$x = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(2)}}{2(1)}$	✓ correct substitution into correct formula
	$x = \frac{6 \pm \sqrt{28}}{2}$ x = 0,35 or x = 5,65	$\checkmark x = 0.35$ $\checkmark x = 5.65$
	OR/OF	(3)
	$x^2 - 6x + 2 = 0$	
	$x^2 - 6x + 2 = 0$ $x^2 - 6x + 9 = -2 + 9$	
	$(x-3)^2 = 7$	$\sqrt{(x-3)^2} = 7$
	$x - 3 = \pm \sqrt{7}$	(4 2)
	$x = 3 \pm \sqrt{7}$	$\checkmark (x-3)^2 = 7$ $\checkmark x = 0.35$
	x = 0.35 or $x = 5.65$	$\checkmark x = 5,65$
		(3)
1.1.3	$\sqrt{x-1}+1=x$	
	$\sqrt{x-1} = x-1$	
	$x-1 = x^2 - 2x + 1$	✓ isolate $\sqrt{x-1}$
		$\checkmark x^2 - 2x + 1$
	$x^2 - 3x + 2 = 0$	d - t - 1 - 1 6
	(x-2)(x-1)=0	✓ standard form ✓ factors
	x = 2 or $x = 1$	✓ both answers
	Both answers are valid	
	OP/OF	(5)
	OR/OF	

	$\sqrt{x-1} + 1 = x$ $\sqrt{x-1} = x - 1$	✓ isolate $\sqrt{x-1}$
	Let $x-1=k$ $\sqrt{k}=k$ $k \ge 0$	
	$k = k^2$ $k^2 - k = 0$	✓ k ²
	k(k-1) = 0	✓ standard form
	(x-1)(x-2)=0 $x=2 \text{ or } x=1 \text{ ; } x \ge 1$ Both answers are valid	✓ factors ✓ both answers (5)
	OR/OF	
	$\sqrt{x-1} + 1 = x$ $\sqrt{x-1} = x - 1$	✓ isolate $\sqrt{x-1}$ ✓ $x-1=0$
	By inspection: x-1=0 or $x-1=1x=2$ or $x=1$	$ \begin{array}{l} \checkmark x - 1 = 1 \\ \checkmark x = 2 \\ \checkmark x = 1 \end{array} $
1.1.4	$3^{x+3} - 3^{x+2} = 486$	(5)
2.2.7	$3^x 3^3 - 3^x 3^2 = 486$	✓ expansion
	$3^{x}(3^{3}-3^{2})=486$	✓ common factor
	$3^x = 27$ $3^x = 3^3$	$\checkmark 3^x = 27$
	x = 3	✓ x = 3 (4)
	OR/OF	(4)
	$3^{x+3} - 3^{x+2} = 486$ $3^{x+2}(3^{1} - 1) = 486$	✓ common factor ✓ (3¹-1)
	$3^{x+2} = 243$	
	$3^{x+2} = 3^5$	✓ 3*+2 = 243
	x + 2 = 5 $x = 3$	✓ x=3
		(4)
1.2.1	$f(x) = x^2 + 3x - 4$ 0 = (x + 4)(x - 1)	
	x = -4 or x = 1	✓ factors ✓ both answers (2)

122	2 2 4 2	T	
1.2.2	$x^2 + 3x - 4 < 0$		
	(x+4)(x-1) < 0		
	OR/ + - + + OF		
	$-4 < x < 1$ OR/OF $x \in (-4; 1)$	✓ ✓ −4 < x <1	(2)
1.2.3	$2x+3 \ge 0$	✓ 2x+3	
	$x \ge -\frac{3}{2}$	$\checkmark x \ge -\frac{3}{2}$	
	2	2	(2)
	$f'(x) \ge 0$ when f is increasing		(-)
	The turning point occurs at $x = \frac{-4+1}{2}$	$\sqrt{x} = \frac{-4+1}{}$	
		$\checkmark x = \frac{-4+1}{2}$ $\checkmark x \ge -\frac{3}{2}$	
	$x \ge -\frac{3}{2}$	$\sqrt{x} \ge -\frac{3}{2}$	
			(2)
1.3	$x = 2y$ and $x^2 - 5xy = -24$		
	$(2y)^2 - 5(2y)(y) = -24$	✓ substitution of 2y	
	$4y^2 - 10y^2 = -24$		
	$-6y^2 = -24$	$\sqrt{-6y^2} = -24$	
	$y^2 = 4$		
	y = -2 or $y = 2$	✓ both y – values	
	x = -4 or $x = 4$	✓ both x- values	
	OR/OF		(4)
	$x = 2y$ and $x^2 - 5xy = -24$		
	$y = \frac{x}{2}$	✓ substitution of $\frac{x}{2}$	
	$x^2 - 5\left(x\right)\left(\frac{x}{2}\right) = -24$	_	
	$x^2 - \frac{5}{2}x^2 = -24$		
	$-\frac{3}{2}x^2 = -24$	$\sqrt{-\frac{3}{2}}x^2 = -24$	
	$x^2 = 16$		
	x = -4 or $x = 4$	✓ both x – values	
	y = -2 or $y = 2$	✓ both y – values	(4)
	OR/OF		

Algebra, Equations and Inequalities Memo

$x = 2y \text{and} x^2 - 5xy = -24$	\checkmark equating $\frac{x}{2} = \frac{x^2 + 24}{5x}$
$y = \frac{x}{2}$ $y = \frac{-x^2 - 24}{-5x}$ $\frac{x}{2} = \frac{x^2 + 24}{5x}$	
$\frac{1}{2} = \frac{1}{5x}$ $5x^2 = 2x^2 + 48$ $3x^2 = 48$	$\checkmark 3x^2 = 48$
$x^{2} = 16$ $x = -4 \text{ or } x = 4$ $y = -2 \text{ or } y = 2$	✓ both x – values ✓ both y – values (4)
	[24]

Question 2 November 2014

2.1	$T_4 = 23$	✓23	(1)
2.2	$T_{251} = a + (n-1)d$	$\checkmark a = 2$ and $d = 7$	
	= 2 + (251-1)(7)	✓ subst. into correct	
	=1752	formula /subt. in korrekte formule	
		√1752	(3)
2.3	²⁵¹	✓ general term/	
	$\sum_{n=1}^{\infty} (7n-5)$	algemene term	
		✓ complete answer /volledige antwoord	(2)
	OR/OF	Troneuige uniwoord	(2)
	250	✓ general term/	
	$\sum_{n=0}^{250} (7p+2)$	algemene term	,
	ρ=0	✓ complete answer / volledige antwoord	(2)
2.4	o nr . n	vonetige uniwoord	(2)
	$S_n = \frac{n}{2}[a+l]$		
	$S_n = \frac{251}{2}[2+1752]$	✓ substitution/substit	
	2	▼ substitution/substit	uste
	= 220127	✓220127	(2)
	OR/OF		
	$S_n = \frac{n}{2} [2a + (n-1)d]$		
	$= \frac{251}{2} [2(2) + (251 - 1)(7)]$	✓ substitution/substit	tusie
	_		
2.5	= 220127	✓220127	(2)
2.5	The new series/ <i>Die nuwe reeks</i> is 16 + 44 + 72 ++1 752	✓✓ generating new	
	16 + 28(n-1) = 1752	series divisible by 4/	
	1736 = 28(n-1)	vorming van nuwe re deelbaar deur 4	seks
	62 = n - 1	✓ T _n =1752	
	n = 63	✓ 63	(4)
	OR/OF		
	2+9+ <u>16</u> +23+30+37+ <u>44</u> +51++ <u>1752</u>	✓ T ₃ is divisible by 4	1/
	There To	is deelbaar deur 4	"
	Then T_7 , T_{11} , T_{15} ,, T_{251} are divisible by 4, thus each 4^{th}	✓ identifying terms	
	term is divisible by 4. Daama is T_7 , T_{11} , T_{15} ,, T_{251} deelbaar deur 4, d.w.s. elke 4^{de}	divisible by 4/	
	term is deelbaar deur 4.	identifiseer terme	
	254 2	deelbaar deur 4 ✓ reasoning/redener	rina
	number of terms divisible by 4 will be = $\frac{251-3}{4}+1=63$	- reasoning/reaener	ing.
	∴ aantal terme deelbaar deur 4 sal wees = $\frac{251-3}{4}+1=63$	√ 63	(4)
	OR/OF		

Position of terms divisible by 4: 3;7;11;...;247;251 $T_n = 4n - 1 = 251$ 4n = 252 n = 63Position of terms divisible by 4: $\checkmark \checkmark$ generating sequence involving position of terms/vorming van reeks i.t.v. positie van terme $\checkmark T_n = 251$ $\checkmark 63$ (4)

Question 3 November 2014

3.1.1	-1; -7 ; -11 ; p ; -6 -4 $p+112$ 2 $p+11-(-4)=2p+15=2$	$\checkmark p + 15 = 2$	
	p = -13	$\sqrt{p} = -13$ (2)	2)
	OR/OF -1 ; -7 ; -11 ; p ;6 -4 p+11 2 2 2	√ first differences/ eerste verskille	
	p+11 = -2 p = -13	$\sqrt{p} = -13$ (2)	, l
	p = -13	• p == 13 (2,	1
3.1.2	2a = 2 $a = 1$	✓ a = 1	
	3a + b = -6 3(1) + b = -6 b = -9	√ b = -9	
	a+b+c=-1 $1-9+c=-1$ $c=7$	√c=7	
	$T_n = n^2 - 9n + 7$	✓answer/antwoord (4)
	OR/OF	\ .	

$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)d_2}{2}$
$= -1 + (n-1)(-6) + \frac{(n-1)(n-2)(2)}{2}$
$= -1 - 6n + 6 + \frac{2n^2 - 6n + 4}{2}$
$= n^2 - 9n + 7$

OR/OF

$$T_0 = 7 = c$$

$$2a = 2 \therefore a = 1$$

$$3a + b = -6 \therefore b = -9$$

$$T_n = n^2 - 9n + 7$$

OR/OF

$$a = \frac{1}{2}(2) = 1$$

$$\therefore T_n = n^2 + bn + c$$

$$T_1 = -1 \therefore 1 + b + c = -1 \dots (1)$$

$$T_2 = -7 \therefore 4 + 2b + c = -7 \dots (2)$$

$$(2) - (1) : 3 + b = -6$$

$$\therefore b = -9$$
sub in (1): $c = 7$

$$\therefore T_n = n^2 - 9n + 7$$

✓ formula/formule

- ✓ substitution of first and second differences/substitusie van eerste en tweede verskille
- ✓ simplification/vereenvoudiging
- ✓ answer/antwoord (4)
- ✓ c-value/c-waarde
- √a-value/a-waarde
- ✓ b-value/b-waarde
- ✓ answer/antwoord
 (4)
- ✓ a-value/a-waarde

- ✓ b-value/b-waarde ✓ c-value/c-waarde
- ✓answer/antwoord

(4)

3.1.3 The sequence of first differences is/Die reeks van eerste verskille is:

$$-6+(n-1)(2) = 96$$
$$n = 52$$

∴ two terms are/twee terme is:

$$T_{52} = 52^2 - 9(52) + 7 = 2243$$

$$T_{53} = 53^2 - 9(53) + 7 = 2339$$

OR/OF

$$\checkmark$$
 - 6+(n - 1)(2) = 96
 \checkmark 52

The sequence of first differences is/Die reeks van eerste verskille is:		
The formula for the sequence of first differences/Die formule vir die reeks van eerste verskille is $T_n = 2n - 8$ 1st difference/Iste verskil: $2n - 8 = 96$ $2n = 104$ $n = 52$	$\sqrt{2n-8} = 96$ $\sqrt{52}$	
n = 32 ∴ two terms are/twee terme is:	√ 32	
The following are twee terms is: $T_{52} = 52^2 - 9(52) + 7 = 2243$ $T_{53} = 53^2 - 9(53) + 7 = 2339$	✓2 243 ✓2 339	(4)
OR/OF $T_{r} - T_{r-1} = 96$	$\checkmark T_n - T_{n-1} = 96$	
$(n^2 - 9n + 7) - [(n-1)^2 - 9(n-1) + 7] = 96$	n n-1	
$n^2 - 9n + 7 - n^2 + 2n - 1 + 9n - 9 - 7 = 96$		
2n = 106		
n = 53	√53	
$T_{52} = 52^2 - 9(52) + 7 = 2243$	√2 243	
$T_{53} = 53^2 - 9(53) + 7 = 2339$	√2 339	(4)
OR/OF		
$T_{n+1} - T_n = 96$ $[(n+1)^2 - 9(n+1) + 7] - [n^2 - 9n + 7] = 96$	$\checkmark T_{n+1} - T_n = 96$	
$n^2 + 2n + 1 - 9n - 9 + 7 - n^2 + 9n - 7 = 96$		
2n = 104		
n = 52	√52	
$T_{52} = 52^2 - 9(52) + 7 = 2243$	✓2 243	
$T_{53} = 53^2 - 9(53) + 7 = 2339$	√2 339	
		(4)

3.2.1
$$T_{12} = 16 \left(\frac{1}{4}\right)^{12-1}$$

$$= \frac{1}{4^9} \text{ or } 4^{-9} \text{ or } \frac{1}{2^{18}} \text{ or } 2^{-18}$$

$$= \frac{1}{4^9} \text{ or } 4^{-9} \text{ or } \frac{1}{2^{18}} \text{ or } 2^{-18}$$

$$= \frac{1}{4^9} \text{ or } 4^{-9} \text{ or } \frac{1}{2^{18}} \text{ or } 2^{-18}$$

$$= \frac{1}{4} \text{ or } 4^{-9} \text{ or } \frac{1}{2^{18}} \text{ or } 2^{-18}$$

$$= \frac{1}{4} \text{ or } 4^{-9} \text{ or } 4^{-9} \text{ or } 2^{-18}$$

$$= \frac{1}{4} \text{ or } 4^{-9} \text{ or } 4^{-9} \text{ or } 2^{-18}$$

$$= \frac{1}{4} \text{ or } 4^{-9} \text{ or } 4^{-9} \text{ or } 2^{-18}$$

$$= \frac{1}{4} \text{ or } 4^{-9} \text{ or } 4^{-9} \text{ or } 2^{-18}$$

$$= \frac{1}{4} \text{ or } 4^{-9} \text{ or } 4^{-9} \text{ or } 2^{-18}$$

3.2.2	$S_{10} = \frac{16\left(1 - \left(\frac{1}{4}\right)^{10}\right)}{1 - \frac{1}{4}}$ = 21,33 OR/OF	✓ substitution into correct formula /substitusie in korrekte formule / answer/antwoord (2)
	$S_{10} = \frac{16\left(\left(\frac{1}{4}\right)^{10} - 1\right)}{\frac{1}{4} - 1}$ = 21,33	✓ substitution into correct formula /substitusie in korrekte formule ✓ answer/antwoord
3.3	$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{99}\right)$ (3\(\A'\)(\&\X'\)(\&\X'\)(\&\X'\)(\&\X'\)(\&\X'\)(100)	(2) ✓ improper fractions/ onegte breuke
	$= \left(\frac{3}{2}\right) \left(\frac{A}{3}\right) \left(\frac{S}{A}\right) \left(\frac{S}{S}\right) \dots \left(\frac{100}{99}\right)$ $= \left(\frac{100}{2}\right)$ $= 50$	$\checkmark \left(1 + \frac{1}{99}\right) \text{ or } \left(\frac{100}{99}\right)$ $\checkmark \checkmark \text{ answer/} antwoord$
	OR/OF $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{4}\right)\left(1 + \frac{1}{99}\right)$ $T_1 = \left(1 + \frac{1}{2}\right) = \frac{3}{2}$	$\checkmark \left(1 + \frac{1}{99}\right)$
	$T_2 = \frac{3}{2} \left(1 + \frac{1}{3} \right) = \frac{3}{2} \times \frac{4}{3} = 2$	✓ giving the first three terms / gee die eerste drie terme
	$T_3 = 2\left(1 + \frac{1}{4}\right) = 2 \times \frac{5}{4} = \frac{5}{2}$ $\frac{3}{2}$, 2, $\frac{5}{2}$ is an arithmetic sequence with $a = \frac{3}{2}$ and $d = \frac{1}{2}$ $\therefore T_{98} = \frac{3}{2} + (98 - 1)\frac{1}{2}$	
	$= \frac{100}{2} = 50$	✓✓answer antwoord (4) [19]

Question 2 Feb March 2015

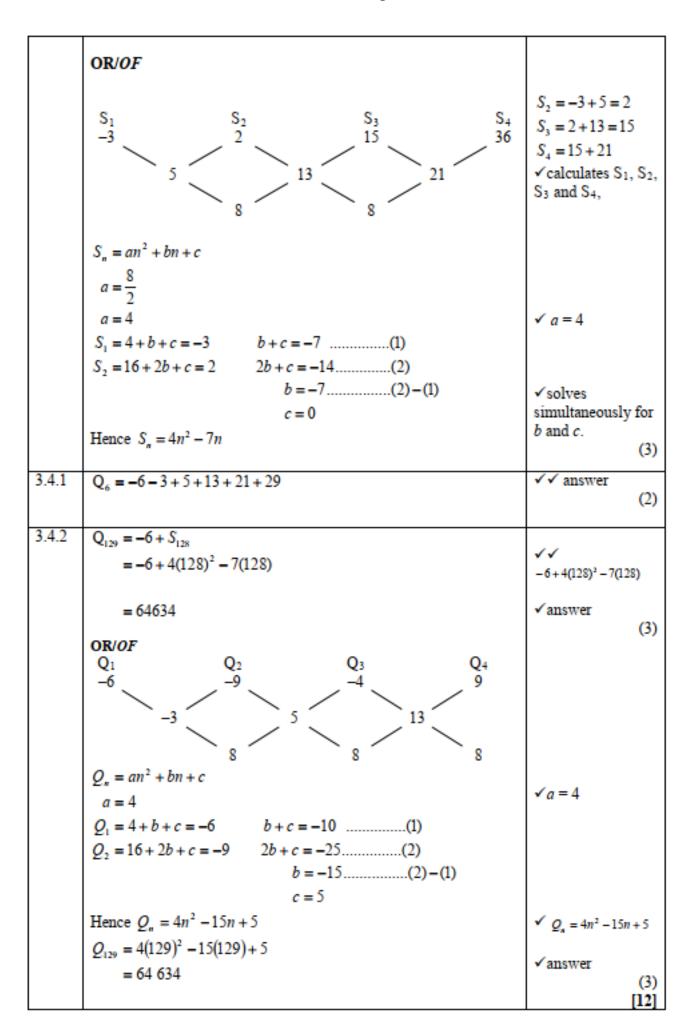
Ques	etion 2	Feb March	2015
2.1	$S_n = a + (a + d) + (a + 2d) + + a + (n - 1)d$	✓ first series/eerste re	eks
	$S_n = a + (n-1)d + a + (n-2)d + a + (n-3)d + + a$	✓ series reversed/reeks	,
	$2S_n = n(2a + (n-1)d)$	omgekeer	
	$2S_n = n(2\alpha + (n-1)\alpha)$	✓ sum/som	
	$S_n = \frac{n}{2} [2a + (n-1)d]$	/ 1: : : /1.1:	
	" 2" , , ,	✓ division/deling	(4)
2.2	50		(4)
2.2	$\sum_{k=0}^{\infty} (100 - 3k) = 97 + 94 + 91 + \dots$		
	k=1	✓a = 97	
	$T_1 = a = 97$	✓d=-3	
	d = -3		
	n = 50 - 1 + 1 = 50	$\checkmark n = 50$	
	71		
	$S_n = \frac{n}{2} [2a + (n-1)d]$		
	50		
	$=\frac{50}{2}[2(97)+49(-3)]$		
	=1175	✓ answer/antwoord	
	=1175	all swell and work	(4)
	OR/OF		` /
	OR/OF		
	$T_1 = a = 97$	$\checkmark a = 97$	
	l = 100 - 3(50) = -50	✓ l = -50	
		/ 50	
	n = 50 - 1 + 1 = 50	✓n = 50	
	$S_n = \frac{n}{2}[a+l]$		
	$S_n = \frac{1}{2}[u + i]$		
	_ 50 [07 _ 50]		
	$=\frac{50}{2}[97-50]$		
	=1175	✓ answer/antwoord	
			(4)
2.3.1 (a)	$T_5 - T_4 = 25$	✓ answer/antwoord	
			(1)
2.3.1 (b)	$T_{70} - T_{69} = 7 + (69 - 1)(6)$	$\sqrt{n} = 69$	
	= 415	√7+(69-1)(6)	
		✓ answer/antw.	(3)
2.3.2	$T_{s9} - T_{e9} = (T_{70} - T_{e9}) + (T_{71} - T_{70}) + + (T_{s9} - T_{88})$	✓ expansion/uitbreidii	ng
	= 415 + 421 +to 20 terms	$\sqrt{n} = 20$	
	20	√ method/metode √a = 415	
	$=\frac{20}{2}[2(415)+19(6)]$	V a − 415	
	= 9440		
	$T_{eo} = T_{so}$ – (sum of the differences from/som van die		
	verskille van T_{ee} to T_{se})		
	$T_{eo} = 23594 - 9440$	√ answer/antwoord	
	=14154		(5)
	OPIOE		
	OR/OF	I	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\therefore 2a = 6$	
a = 3	
3a + b = 7	
b = -2	✓ a and/en b
$T_{89} = 3(89)^2 - 2(89) + c = 23594$	$\checkmark T_{so}$ (subst $n = 89$)
∴ c = 9	✓ T _n
$T_n = 3n^2 - 2n + 9$	(and attention for betterning
$T_{69} = 3(69)^2 - 2(69) + 9$	✓ substitution/substitusie ✓ answer/antwoord
$T_{69} = 14154$	(5)
OR/OF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\therefore 2a = 6$	
a=3	
7 - 6 = 1	
$T_1 - T_0 = 1$	✓ a and/en b
a+b+c-c=1	▼ a anden b
3 + b = 1	✓ T_{89} (subst $n = 89$)
b = -2	/T
$T_{89} = 3(89)^2 - 2(89) + c = 23594$	✓ T _n
$\therefore c = 9$ $\therefore T = 3n^2 = 2n + 0$	✓substitution/substitusie
$T_n = 3n^2 - 2n + 9$	✓ answer/antwoord
$T_{69} = 3(69)^2 - 2(69) + 9$	(5) [17]
$T_{69} = 14154$,

Question 3 Feb March 2015

3.1	$r = \frac{40.5}{45} = 0.9$ $T_{12} = 45(0.9)^{12-1}$ $= 14,12147682$ $= 14,12$	√r = 0,9 √ substitution into correct formula/substitusie in korrekte formule √ answer/antwoord (3)
3.2	r = 0.9 $-1 < 0.9 < 1$	✓answer/antwoord (1)
3.3	$S_{\infty} = \frac{45}{1 - 0.9}$ $S_{\infty} = 450$	✓ substitution/substitusie ✓ 450 (2)

3.4	$S_{\infty} - S_{\parallel} < 1$ $S_{\infty} = S_{\parallel} < 1$ $S_{\infty} = 45(1 - (0.9)^n)$	$\sqrt{450 - \frac{45(1 - (0,9)^n)}{1 - 0.9}}$
	$S_{\infty} - S_{n} < 1$ $S_{\infty} - S_{n} = 450 - \frac{45(1 - (0.9)^{n})}{1 - 0.9}$ $S_{\infty} - S_{n} = 450 - 450(1 - (0.9)^{n})$	
	450(0,9)" <1	
	$(0,9)$ " $< \frac{1}{450}$ $\log(0,9)$ " $< \log \frac{1}{450}$	$\checkmark (0,9)^n = \frac{1}{450}$
	$\log(0.9)^n < \log \frac{1}{450}$ $n.\log(0.9) < \log \frac{1}{450}$	
		✓ introducing/gebruik logs
	$n > \frac{\log \frac{1}{450}}{\log(0.9)}$	✓making n the subject/maak n die onderwerp
	n > 57,98 Smallest value/Kleinste waarde: $n = 58$	$\checkmark_n = 58 \tag{5}$
		[11]


Question 2 November 2015

2.1	$r = \frac{T_2}{T_1}$ $= \frac{5}{10}$	
	$=\frac{1}{2}$	$\checkmark r = \frac{1}{2}$
	$T_{5} = 1,25 \left(\frac{1}{2}\right)$ $= \frac{5}{8} \text{ or } 0,625$ $T_{5} = 10 \left(\frac{1}{2}\right)^{4}$ $= \frac{5}{8} \text{ or } 0,625$ $= \frac{5}{8} \text{ or } 0,625$	
	$= \frac{5}{8} \text{ or } 0,625$ $= \frac{5}{8} \text{ or } 0,625$	✓answer (2)
2.2	$T_n = 10\left(\frac{1}{2}\right)^{n-1}$	✓ substitutes $a = 10$ into GP formula ✓ substitutes $r = \frac{1}{2}$
		into GP formula (2)
2.3	For convergence/Om te konvergeer $-1 < r < 1$	4 4
	Since/Aangesien $r = \frac{1}{2}$ and/en $-1 < \frac{1}{2} < 1$	$\sqrt{-1} < r < 1$ ✓ show that $r = \frac{1}{2}$ is
	the sequence converges/die ry konvergeer	-1 < r < 1
		(2)

$S_{\infty} \cdot S_{n} = \frac{a}{1-r} - \frac{a(1-r^{n})}{1-r}$ $= \frac{10}{1-\frac{1}{2}} - \frac{10\left(1-\frac{1}{2}^{n}\right)}{1-\frac{1}{2}}$ $= 20 - 20\left(1-\frac{1}{2}^{n}\right)$ $= 20\left(\frac{1}{2}\right)^{n}$ $= 20\left(\frac{1}{2}\right)^{n}\left[1+\frac{1}{2}+\frac{1}{4}+\ldots\right]$ $= 10\left(\frac{1}{2}\right)^{n}\left[1+\frac{1}{2}+\frac{1}{4}+\ldots\right]$ $= 10\left(\frac{1}{2}\right)^{n}\left[1+\frac{1}{2}+\frac{1}{4}+\ldots\right]$ $= 20\left(\frac{1}{2}\right)^{n}$ $= 20\left(\frac{1}{2}\right$
$S_{\infty} - S_{n} = T_{n+1} + T_{n+2} + T_{n+3} + \dots$ $= 10 \left(\frac{1}{2}\right)^{n} \left[1 + \frac{1}{2} + \frac{1}{4} + \dots\right]$ $= 10 \left(\frac{1}{2}\right)^{n} \left[\frac{1}{1 - \frac{1}{2}}\right]$ $= 20 \left(\frac{1}{2}\right)^{n}$ $= 20 \left(\frac{1}{2}\right)^{n}$ $S_{\infty} - S_{n} = \frac{a}{1 - r} - \frac{a(1 - r^{n})}{1 - r}$ $= a - a + ar^{n}$ $\sqrt{\frac{1}{1 - \frac{1}{2}}}$ $\sqrt{\frac{1}{1 - \frac{1}{2}}}$ $\sqrt{\frac{a - a + ar^{n}}{1 - r}}$ $\sqrt{\frac{ar^{n}}{1 - r}}$
$= 10 \left(\frac{1}{2}\right)^{n} \left[1 + \frac{1}{2} + \frac{1}{4} + \dots\right]$ $= 10 \left(\frac{1}{2}\right)^{n} \left[\frac{1}{1 - \frac{1}{2}}\right]$ $= 20 \left(\frac{1}{2}\right)^{n}$ $= 20 \left(\frac{1}{2}$
$S_{\infty} - S_n = \frac{a}{1-r} - \frac{a(1-r^n)}{1-r}$ $a - a + ar^n$ $\sqrt{\frac{a-a+ar^n}{1-r}}$ $\sqrt{\frac{ar^n}{1-r}}$
$= \frac{10\left(\frac{1}{2}\right)^n}{\frac{1}{2}}$ $= 20\left(\frac{1}{2}\right)^n$ $= 20\left(\frac{1}{2}\right)^n$ (4)

Question 3 November 2015

3.1	d = 8	✓ d value	
	$T_k = a + (k-1)d$		
	= -3 + (k - 1)(8) = $-3 + 8k - 8$		
	= -3 + 8k - 8 $= 8k - 11$		
	= 5x -11	✓answer	(2)
3.2	$\sum_{k=1}^{n} (8k-11) \mathbf{OR}/\mathbf{OF} \sum_{k=1}^{n-1} (8(k+1)-11) = \sum_{k=0}^{n-1} (8k-3)$	√ for general ter	m
	k=1	✓lower and upp values in sigma	
		notation	
			(2)
3.3	$S_{n} = \frac{n}{2} [2a + (n-1)d]$	√formula	
	-	√ substitution	
	$= \frac{n}{2} [2(-3) + (n-1)(8)]$		
	$=\frac{n}{2}[-6+8n-8]$		
	$=\frac{n}{2}[8n-14]$	$\sqrt{\frac{n}{2}}[8n-14]$	
	= n(4n - 7)	_	(3)
	$=4n^2-7n$		
	OR/OF		
	$S_n = \frac{n}{2} [2a + (n-1)d]$	√ formula	
		✓ substitution	
	$= \frac{n}{2} [2(-3) + (n-1)(8)]$		
	$=\frac{n}{2}[-6+8n-8]$	$\sqrt{\frac{n}{2}}[8n-14]$	
	$=\frac{n}{2}[8n-14]$		(3)
	$=4n^2-7n$		
	OR/OF		
	$S_n = \frac{n}{2}[a+l]$	√formula	
	$= \frac{n}{2} [-3 + 8n - 11]$	✓substitution	
		$\sqrt{\frac{n}{2}}[8n-14]$	
	$=\frac{n}{2}[8n-14]$	2" "	(3)
	$=4n^2-7n$		(-)

Question 2 Feb March 2016

2.1.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	The next term of the sequence is 12./Die volgende term in die ry is 12.	√answer	(1)
2.1.2	2a = 1		
	$a = \frac{1}{2}$	✓ value of <i>a</i>	
	$3a + b = T_2 - T_1$	$\checkmark 3\left(\frac{1}{2}\right) + b = 2$	
	$3\left(\frac{1}{2}\right) + b = 2$	(2)	
	$b = \frac{1}{2}$	✓value of b	
	$a+b+c=T_1$	1 1	
	$\frac{1}{2} + \frac{1}{2} + c = -2$	$\sqrt{\frac{1}{2} + \frac{1}{2} + c} = -2$	
	$c = -3$ $\therefore T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$	✓ value of c	(5)
			(3)
	OR/OF		
	2a = 1		-
	1		
	$a=\frac{1}{2}$	✓ value of <i>a</i>	
	$T_n = an^2 + bn + c$,	
	$-2 = \frac{1}{2} + b + c \dots T_1$	$\checkmark -2 = \frac{1}{2} + b + c$	
	$b+c=-\frac{5}{2}$ line 1		
	$0 = 2 + 2b + c \dots T_2$	$\checkmark 0 = 2 + 2b + c$	
	2b+c=-2line 2		
	line 2 – line 1:	✓ value of <i>b</i>	
	$b=\frac{1}{2}$	Value of b	
	substitute in line 1 or substitute in line 2		
	$\frac{1}{2} + c = -\frac{5}{2}$ $2\left(\frac{1}{2}\right) + c = -2$		
	c = -3	✓ value of c	
	$c = -3$ $\therefore T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$		(5)
	OR/OF		

Patterns and Sequences Memo

Patterns and Sequences Memo	
$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$	
$= -2 + (n-1)(2) + \frac{(n-1)(n-2)}{2}(1)$	√ formula
$= -2 + 2n - 2 + (n^2 - 3n + 2)(\frac{1}{2})$	✓substitution
$= -2 + 2n - 2 + \frac{1}{2}n^2 - \frac{3}{2}n + 1$ $= \frac{1}{2}n^2 + \frac{1}{2}n - 3$ OP/OF	✓ value of a ✓ value of b ✓ value of c (5)
OR/OF	(3)
$2a = 1$ $a = \frac{1}{2}$	✓ value of a
$3a + b = T_2 - T_1$ $3\left(\frac{1}{2}\right) + b = 2$	$\checkmark 3\left(\frac{1}{2}\right) + b = 2$
$b = \frac{1}{2}$	(2) ✓ value of b
$T_0 = c = -3$	$\checkmark T_0 = c$
$T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$ OR/OF	✓ value of c (5)
Since $T_2 = 0$, $(n-2)$ is a factor of T_n	
$T_n = an^2 + bn + c$	
=a(n-2)(n-k)	
$T_1 = -2 = a(1-2)(1-k)$	
-2 = -a(1-k)	(T (2V 1)
$a = \frac{2}{1-k}$	$\checkmark T_n = a(n-2)(n-k)$
$ \begin{array}{c} 1-k \\ T_3 = 3 = a(3-2)(3-k) \end{array} $	$\checkmark -2 = a(1-2)(1-k)$
$ \begin{array}{c} 1_3 = 3 = a(3 - 2)(3 - k) \\ 3 = a(3 - k) \end{array} $	
	$\checkmark 3 = a(3-2)(3-k)$
$a = \frac{3}{3-k}$	
$\frac{2}{1-k} = \frac{3}{3-k}$	
2(3-k) = 3(1-k)	
6-2k=3-3k	
<i>k</i> = −3	
$a=\frac{1}{2}$	✓ value of k
$T_n = \frac{1}{2}(n-2)(n+3)$	✓ value of a
$= \frac{1}{2}n^2 + \frac{1}{2}n - 3$	(5)

	Patterns and Sequences Memo	
2.1.3	$\frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$	$\sqrt{\frac{1}{2}n^2 + \frac{1}{2}n - 3} = 322$
	$n^2 + n - 6 = 644$	
	$n^2 + n - 650 = 0$	✓standard form
	$n = \frac{-1 \pm \sqrt{1^2 - 4(1)(650)}}{2}$	✓ substitution into quadratic formula
	n = 25 or $n = -26$	•
	The 25 th term has a value of 322./Die 25 ^{ste} term se waarde is 322.	√answer
	OR/OF	(4)
	$\frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$	$\sqrt{\frac{1}{2}n^2 + \frac{1}{2}n - 3} = 322$
	$n^2 + n - 6 = 644$	
	$n^2 + n - 650 = 0$	✓standard form
	(n-25)(n+26)=0	Stationio IVIII
	n = 25 or $n = -26$	√factors
	The 25 th term has a value of 322./Die 25 ^{ste} term se waarde is 322.	✓answer (4)
	OR/OF	
	$\frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$	$\sqrt{\frac{1}{2}n^2 + \frac{1}{2}n - 3} = 322$
	$n^2 + n - 6 = 644$	$\checkmark (n+3)(n-2)$
	$(n+3)(n-2) = 23 \times 28$	✓23×28
	n-2=23	
	n = 25	✓answer
221	T	(4) ✓ a + d = 8
2.2.1	$T_2: \qquad a+d=8$	$\checkmark a + a = 8$ $\checkmark a + 4d = 10$
	$T_5: \qquad a+4d=10$ $T_5: \qquad 3d=2$	
	$T_5 - T_2: \qquad 3d = 2$	
	$d = \frac{2}{3}$	✓answer (3)
2.2.2	$T_1 = T_2 - d$	
	$=8-\frac{2}{3}$	
	3	$\checkmark T_1 = \frac{22}{3}$
	$=\frac{22}{3}$	3
	$T_n = a + (n-1)d$	
	$=\frac{22}{3}+(n-1)\frac{2}{3}$	
	$=\frac{2n+20}{3}$	✓answer
		(2)
	$S_{50} = \sum_{n=1}^{50} \left(\frac{22}{3} + (n-1)\frac{2}{3} \right)$	
1 1	n=1 \	

	OR/OF	
	$S_{50} = \sum_{n=1}^{50} \left(\frac{2n+20}{3} \right)$	(2)
2.2.3	$S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{50} = \frac{50}{2} \left[2\left(\frac{22}{3}\right) + (50-1)\left(\frac{2}{3}\right) \right]$ $= \frac{3550}{3}$	✓ correct substitution into correct formula ✓ ✓ answer (3) [18]

Question 3 Feb March 2016

Question 3	Feb March 2016
3.1 $r = \frac{70}{}$	
$r = \frac{r}{100}$	
$=\frac{7}{10}$	
10	✓value of r
$T_n = ar^{n-1}$	
$11,76 = 100 \left(\frac{7}{10}\right)^{n-1}$	✓substitution in
	formula for T_n
$\left(\frac{7}{10}\right)^{n-1} = \frac{11,76}{100}$	
$n-1 = \log_{\frac{7}{10}} \left(\frac{11,76}{100} \right)$	✓use of logarithms
n-1=6	use of logarithms
n-1=0 $n=7$	
During the 7 th year/In die 7 ^{de} jaar	✓answer (4)
	(4)
OR/OF	
70	
$r = \frac{70}{100}$	
$=\frac{7}{10}$	(lus of
= 10	✓value of r
$T = \alpha v^{\kappa-1}$	
$T_n = ar^{n-1}$	✓substitution in
$11,76 = 100(0,7)^{n-1}$	formula for T
$0.7^{*-1} = \frac{11.76}{100}$	
= 0,1176	
$(n-1)\log 0.7 = \log 0.1176$	✓use of logarithms
$n-1 = \frac{\log 0.1176}{2 \log 0.27}$	
$n-1 = \frac{\log 6, 276}{\log 0,7}$	
n-1=6	
n = 7	√answer
Sponsored by Angle American Platinum 7th jaar 34	Compiled by XL Education

3.2	h(n) = 130 + (100 + 70 + 49 + to n terms)	√ 130
	$=130 + \frac{100(1 - (0,7)^n)}{1 - 0,7}$	$\sqrt{100 + 70 + 49 + + to } $ terms
	$=130 + \frac{100(1 - (0,7)^n)}{0,3}$	✓answer (3)
3.3	Eventual height of the tree/ <i>Uiteindelike hoogte van die boom</i> $= 130 + \frac{100}{1 - 0.7}$	$\checkmark \checkmark 130 + \frac{100}{1 - 0.7}$
	$= 463,33 \text{ mm} \text{ OR} \frac{1390}{3} \text{ mm}$	✓answer (3) [10]

2.1.1	27 - b = b - 13	✓ $27 - b = b - 13$	
	$b = \frac{27 + 13}{2}$		
	b = 20		
	27 - 20 = 13 - a	$\checkmark 27 - 20 = 13 - a$	
	a = 6		(2)
	OR/OF		
	27 - 13 = 2d	$\checkmark d = 7 \text{ or } 27 - 13 = 2d$	
	d = 7		
	b = 13 + 7 = 20	$\sqrt{b=13+7}$	
	a = 13 - 7 = 6	a = 13 - 7	(2)
2.1.2	a = 6 $d = 7$		(2)
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	✓ d = 7	
	$S_{20} = \frac{20}{2} [2(6) + (20 - 1)(7)]$	✓ correct substitution into correct formula	
	= 1450	√answer	
			(3)
	OR/OF		
	$T_{20} = a + 19(d)$		
	= 6 + 19(7)		
	=139		
	$S_n = \frac{n}{2} [a + T_n]$	✓ d = 7	
	$S_{20} = \frac{20}{2} [6 + 139]$	$\checkmark T_{20} = 139$	
	_	✓answer	
	= 1450		(3)

2.1.3	$T_n = 6 + (n-1)(7)$ = $7n - 1$	$T_n = 6 + (n-1)(7)$ or $7n-$	-1
	$\sum_{n=1}^{20} (6 + 7(n-1))$		
	$=\sum_{n=1}^{20} (7n-1)$	$\checkmark \sum_{n=1}^{20}$	(2)
2.2.1	$r = \frac{(x-2)(x+2)}{x-2}$ or $r = \frac{(x^2-4)(x+2)}{x^2-4}$	$\sqrt{\frac{(x^2-4)}{x-2}}$ or $\frac{(x-2)(x+2)}{x-2}$ or	(2)
	$= x + 2$ $= x + 2$ 0 $x^2 - 4$	$\frac{(x^2-4)(x+2)}{x^2-4}$	
	For convergence/Om te konvergeer:	$\checkmark r = x + 2$	
	-1 <r<1 -1<x+2<1< th=""><th>√-1<r<1< th=""><th></th></r<1<></th></x+2<1<></r<1 	√-1 <r<1< th=""><th></th></r<1<>	
	-3 < x < -1	✓ answer	(4)
222	(5) (5) (5)		٧.,
2.2.2	$\left(-\frac{7}{2}\right)+\left(-\frac{7}{4}\right)+\left(-\frac{7}{8}\right)+\dots$	7	
	$S_{\infty} = \frac{a}{1 - r}$	$\checkmark a = -\frac{7}{2}$	
	1-r	✓ substitution into	
	$=\frac{-\frac{7}{2}}{1}$		
	= 2 1	correct formula	
	$1 - \frac{1}{2}$	✓ answer	(3)
	= - 7		(-)
	OR/OF		
	$S_{\infty} = \frac{a}{1 - r}$	/ autoritusi au inta	
	(x-2)	✓ substitution into	
	$= \frac{(x-2)}{1-(x+2)}$	correct formula	
	$=\frac{x-2}{-x-1}$,	
	$-\frac{3}{3}$ - 2	✓ substitution of $x = -\frac{3}{2}$	
	$=\frac{-\frac{3}{2}-2}{\frac{3}{2}-1}$		
	7		
	$=\frac{-\frac{7}{2}}{\frac{1}{2}}$	√answer	
	2		(2)
	= - 7		(3) [14]

3.1		
J.1	-1 2 9 20	
	3 7 11	
	4 4	✓2 nd difference = 4
	2a = 4	
	a = 2	✓ a = 2
	3a+b=3	
	b = -3 $a + b + c = -1$	✓ b = -3
	c=0	
	$T_n = 2n^2 - 3n$	$\checkmark T_n = 2n^2 - 3n \tag{4}$
	OR/OF	(4)
	$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$	✓ formula
	$= (-1) + (n-1)(3) + \frac{(n-1)(n-2)}{2}(4)$	✓ 2 nd difference = 4
	$=-1+3n-3+2n^2-6n+4$	✓simplifying
	$=2n^2-3n$	$\checkmark T_n = 2n^2 - 3n \qquad (4)$
3.2	$T_n = 2n^2 - 3n$	
	$T_{48} = 2(48)^2 - 3(48)$	✓ substitution
	= 4464	✓ answer (2)
3.3	3+7+11	(2)
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	
		✓ a = 3
	$= \frac{n}{2} [2(3) + (n-1)4]$	✓ d = 4
	$=\frac{n}{2}[6+4n-4]$	✓ substitution into
	$= 2n^2 + n$	correct formula (3)
3.4	$S_{69} = 9591$ and $T_1 = -1$	
	(of the original sequence/van die oorspronklike ry)	((2-24) (2)
	9591 + (-1) = 9590	√ (9591)+(-1)
	$S_{69} + T_1 = 9590$ The 70 th term of the original sequence will have a value of 9590	√70
	OR/OF	(2)

Patterns and Sequences Memo

$$2n^{2} - 3n = 9590$$

$$2n^{2} - 3n - 9590 = 0$$

$$(n - 70)(2n + 137) = 0$$

$$n = 70$$

$$T_{70} = 9590$$

$$(2n^{2} - 3n - 9590)$$

$$(70)$$

$$(2)$$

$$(11]$$

Question 2

November 2016

2.1	$T_{\scriptscriptstyle A} = -7$	√ _7	
	14 - 7		(1)
2.2	$T_n = a + (n-1)d$		
	-87 = 5 + (n-1)(-4)	$\checkmark a = 5 \text{ and } d = -4$	
	-87 = 5 - 4n + 4	\checkmark -87 = 5 + (n-1)(-4)	
	4n = 96		
	n = 24	✓ n = 24	(2)
	OR/OF		(3)
	-4n+9=-87	$\sqrt{-4n+9}$	
	-4n = -96	$\checkmark -4n + 9$ $\checkmark -4n + 9 = -87$	
	n = 24	$\checkmark n = 24$	
	n – 24	\vee $n=24$	(3)
2.3	-3;-7;;-87		(-)
	$S_n = \frac{n}{2} [a + T_n]$		
		✓ n = 22	
	$S_{22} = \frac{22}{2} [-3 - 87]$	$\checkmark n = 22$ $\checkmark a = -3$	
	= -990	✓ answer	
	_ 330	answer	(3)
ļ	OR/OF		
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$S_{22} = \frac{22}{2} [2(-3) + (22 - 1)(-4)]$	✓ n = 22	
	2	✓ a = -3	
	= - 990	✓ answer	(2)
	OR/OF		(3)
	All negative terms can be written down and added to get the		
	answer of -990./Alle negatiewe terme kan neergeskryf word	$\sqrt{a} = -3$	
	en dan bymekaar getel word om –990 te kry.	✓✓ answer	(3)
	OR/OF		
	Sum = S_{24} - (5 + 1) = $\frac{24}{2}$ [5 - 87] - 6 = -990	$ √a = -3 $ $ √ \text{ answer} $ $ √ \frac{24}{2}[5 - 87] $ $ √ -6 $ $ ✓ \text{ answer} $	
	$=\frac{24}{2}[5-87]-6$	√ -6	
	= -990	✓ answer	
			(3)

2.4 5;-15;-35	2.4	2.4 5;-1:	5;-35
---------------	-----	-----------	-------

$$d = -20$$

$$T_n = -20n + 25$$

Last term in the sequence divisible by 5 is:/Laaste term in die ry deelbaar deur 5 is:

$$-4187+4(3)$$

$$= -4175$$

$$T_n = -20n + 25$$

$$-4175 = -20n + 25$$

$$20n = 4200$$

$$n = 210$$

There will be 210 terms in the sequence that is divisible by 5./Daar is 210 terme in die ry deelbaar deur 5.

$\sqrt{-4175} = -20n + 25$

$$\sqrt{n} = 210$$

✓ d = -20

 $T_n = -20n + 25$

(4)

OR/OF

$$T_n = -4n + 9$$

$$-4187 = -4n + 9$$

$$-4187 = -4n + 9$$

$$4n = 4196$$

$$n = 1049$$

There are 1049 terms in the sequence. Daar is 1049 terms in die rv.

 $\sqrt{-4n+9} = -4187$

$$\sqrt{n} = 1049$$

 T_1 ; T_6 ; T_{11} ; T_{16} ... are divisible by 5./is deelbaar deur 5.

The largest integer value of k such that

$$5k - 4 \le 1049$$

$$5k \le 1053$$

$$k \le 210,6$$

$$k = 210$$

 \checkmark 5k − 4 ≤ 1049

$$\sqrt{k} = 210$$

(4)

OR/OF

$$T_n = a + (n-1)d$$

$$-4175 = 5 + (n-1)(-4)$$

$$-4180 = -4(n-1)$$

$$n = 1046$$

Number of terms divisible by 5

$$= \frac{1046 - 1}{5} + 1$$
$$= 210$$

 $\checkmark d = -4$

$$\checkmark -4175 = -4n + 9$$

√ 1046

 $\sqrt{n} = 210$

(4) [11]

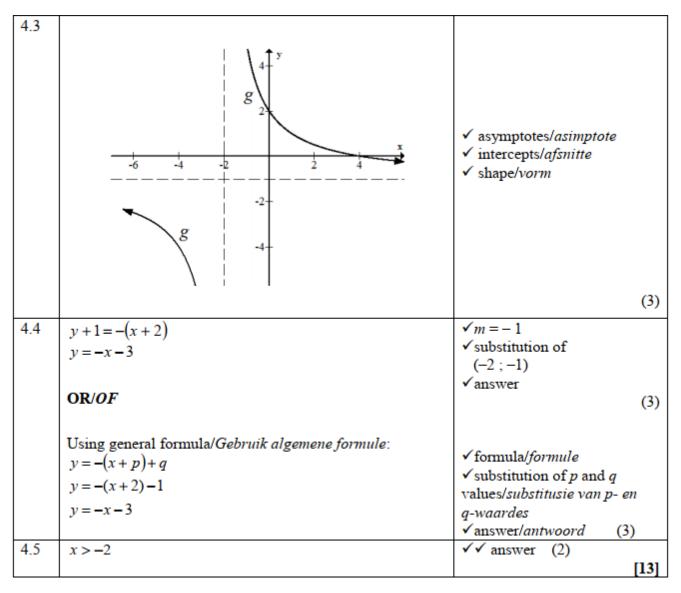
Question 3 November 2016

3.1.1	-1 ; x ; 3 ; $x+8$;	
	x+1 $x+1$ $x+5$ $x+8$	$\sqrt{x+1}; 3-x \text{ and } x+5$
	$-2x+2 \qquad 2x+2$ $-2x+2=2x+2$	✓ calculating second differences ✓ -2x+2=2x+2
	-2x + 2 = 2x + 2 $4x = 0$	
	x = 0 $x = 0$	$\checkmark x = 0 \tag{4}$
3.1.2	First differences/Eerste verskille: 1;3;5;	
	$S_n = \frac{n}{2} [2(1) + (n-1)(2)]$ = n^2	$\checkmark S_n = n^2$
	$250 < n^2$ $n > \sqrt{250}$	✓ S _n > 250
	∴ n > 15,8	✓ n > 15,8
	The sum of the 16 first differences will be greater than 250. Therefore the 17 th term of the quadratic number pattern is the first satisfying this condition./Die som van 16 eerste verskille sal groter as 250 wees. Gevolglik sal die 17 ^{de} term van die kwadratiese getalpatroon die eerste wees wat aan die voorwaarde voldoen.	✓ n = 17 (4)
3.2.1	$21 + 21(0,85) + 21(0,85)^{2} + \dots$ $T_{n} = ar^{n-1}$ $T_{10} = (21)(0,85)^{9}$ $= 4,86 \text{ cm}$	✓ $n = 10$; $r = 0.85$ or $\frac{17}{20}$ ✓ substitution into correct formula ✓ answer (3)
3.2.2	$S_{n} = \frac{a(1-r^{n})}{1-r}$ $S_{15} = \frac{21(1-(0.85)^{15})}{1-0.85}$	✓ n = 15 ✓ 127,77
	= 127,77 Area of the page = 30 x 21 = 630 Percentage of paper covered in grey ink: 127,77	✓ 630
	$= \frac{127,77}{630} \times 100\%$ $= 20,28\%$	✓ 20,28 (4) [15]

Question 4 November 2014

4.1	p=1	✓p value /waarde
4.1	-	✓ q value /waarde
	q = 1	(2)
4.2	2	
4.2	$0 = \frac{2}{x+1} + 1$	$\sqrt{0} = \frac{2}{x+1} + 1$
		x+1
	-x-1=2	
	x = -3	$\checkmark x = -3$
		(2)
	OR/OF	
		✓ reflect across/reflekteer om
	Reflect (0; 3) across $y = -x$ to get $T(-3; 0)$	v = -x
	x = -3	,
	Reflekteer (0; 3) om $y = -1$ om $T(-3; 0)$ te kry	
	x = -3	$\checkmark x = -3$
		(2)
4.3	Shifting g five units to the left shifts (-1; 0) five units	7
	to the left.	
	x = -6	✓ answer/antwoord (1)
4.4	2 .	✓ equating both graphs/stel
	$\frac{2}{x+1} + 1 = x$	grafieke gelyk
	$2+x+1=x^2+x$	
		1 2 2
	$x^2 = 3$	$\checkmark x^2 = 3$
	$x = \sqrt{3}$ since at S, $x > 0$	$\checkmark x = \sqrt{3} \text{ and } y = \sqrt{3}$
	$y = \sqrt{3} = 1,73$	
	$OS^2 = x^2 + y^2 = 3 + 3 = 6$	✓ OS ² = 6
	$\therefore OS = \sqrt{6} = 2,45 \text{ units/eenhede}$	✓ answer/antwoord (5)
	OR/OF	
ĺ	Translate g one unit down and one unit to the	
	right/Transleer g een eenheid af en een eenheid na	
	regs	
	2	2
	The new equation/Die nuwe vergelyking: $p(x) = \frac{2}{x}$	$\checkmark p(x) = \frac{2}{x}$
	Therefore the image of S is $S'(\sqrt{2}; \sqrt{2})$ /	
	Daarom is die beeld van S nou $S'(\sqrt{2};\sqrt{2})$	✓✓ coord. of/koörd. van S'
	Now translate p back to g/Transleer p terug na g:	
	$S(\sqrt{2}-1;\sqrt{2}+1)$	✓ coord. of/koörd. van S
	$OS^{2} = (\sqrt{2} - 1)^{2} + (\sqrt{2} + 1)^{2} = 2 - 2\sqrt{2} + 1 + 2 + 2\sqrt{2} + 1$	
	$\therefore OS = \sqrt{6} = 2,45 \text{ units/eenhede}$	
L		answer/antwoord (5)
4.5	k < 3 will give roots with opposite signs/	$\checkmark k < 3$ (1)
	k < 3 sal wortels met teenoorgestelde tekens gee	
		[11]

Question 5 November 2014


5.1	$y = \log_a x$	(1)	
	$-1 = \log_a \frac{1}{3}$	\checkmark subt. $\left(\frac{1}{3}; -1\right)$	
	$a^{-1} = \frac{1}{3}$	✓ subt. $\left(\frac{1}{3}; -1\right)$ ✓ $a^{-1} = \frac{1}{3}$ or $a = \left(\frac{1}{3}\right)^{-1}$	
	$a = \left(\frac{1}{3}\right)^{-1}$		(2)
	∴ a = 3		
5.2	$h: x = \log_3 y$	✓ swop x and y/ruil x en y	
	∴ y = 3*	(
	-	✓ answer/antwoord	(2)
5.3	$g(x) = -\log_3 x$	✓answer/antwoord	
			(1)
	OR/OF		
	$g(x) = \log_3 \frac{1}{x}$	✓ answer/antwoord	
	$g(x) = \log_3 \frac{1}{x}$		(1)
	OR/OF		
	$g(x) = \log_{x} x$		
	$g(x) = \log_{\frac{1}{3}} x$	✓answer/antwoord	
	OR/OF		(1)
	$x = 3^{-y}$	✓answer/antwoord	(1)
	OR/OF		
	$x = \left(\frac{1}{3}\right)^y$		(4)
5.4	x > 0	✓ answer/antwoord ✓ answer/antwoord	(1)
J.4	120	- answer/antwoora	(1)
	OR/OF		-
	(0;∞)		
	(0,5)	✓ answer/antwoord	
5.5	1 2		(1)
ر.ر	$\log_3 x = -3$		
	$x = 3^{-3}$	✓ exponential form/	
	$x = \frac{1}{27}$	eksponensiële vorm ✓ simplification/vereenvoud	iging
	1	- simpinication/vereenvoud	ıgıııg
	$x \ge \frac{1}{27}$	✓answer/antwoord	(3) [9]
		I	

Question 6 November 2014

6.1	$4x^2 - 6 = 0$	✓ y = 0
	$x^2 = \frac{3}{2}$	
	x = 1,22 (x - coordinate of S is positive)	√ 1,22 (2)
6.2	(0;-6)	✓ 0 ✓-6 (2)
6.3.1	QT = f(x) - g(x) = $2\sqrt{x} - (4x^2 - 6)$ or $= 2\sqrt{x} - 4x^2 + 6$	✓✓ correct formula/ korrekte formule ✓ substitution/substitusie (3)
6.3.2	$QT = 2x^{\frac{1}{2}} - 4x^2 + 6$	
	Deravitive of QT = $x^{\frac{-1}{2}} - 8x = 0$ $\frac{1}{\sqrt{x}} = 8x$	✓ derivative/afgeleide ✓ derivative equal to 0/ afgeleide gelyk aan 0
	$x^{\frac{3}{2}} = \frac{1}{8}$ or $\frac{1}{x} = 64x^2$	$\checkmark x^{\frac{3}{2}} = \frac{1}{8}$
	$x = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	
	$x = \left(\frac{1}{2}\right)^2 \text{ or } x^3 = \frac{1}{64}$	
	$x = \frac{1}{4} = 0,25$	✓x-value/x-waarde
	Max/Maks QT = $2\left(\frac{1}{4}\right)^{\frac{1}{2}} - 4\left(\frac{1}{4}\right)^{2} + 6$	✓ substitution/substitusie
	$= 6\frac{3}{4} = 6,75 \text{units/eenhede}$	✓ answer/antwoord (6) [13]

Question 4 Feb March 2015

4.1	x = -2	✓ x = -2
	y = -1	$\checkmark y = -1 \tag{2}$
4.2.1	$g(0) = \frac{6}{0+2} - 1$	
	= 2 y-intercept/afsnit (0; 2)	✓ answer/antwoord (1)
4.2.2	$0 = \frac{6}{x+2} - 1$	✓ equating to/stel gelyk aan 0
	$1 = \frac{6}{x+2}$	
	x + 2 = 6	
	x = 4	✓ answer/antwoord
	x-intercept/afsnit (4; 0)	(2)

Question 5 Feb March 2015

5.1	$9 = a^2$ $a = 3$	$ \begin{array}{l} \checkmark 9 = a^2 \\ \checkmark a = 3 \end{array} \tag{2} $
	OR/OF	
	$f^{-1}(x) = \log_a x$ $2 = \log_a 9$	
	$a^2 = 9 = 3^2$	$\checkmark 9 = a^2$ $\checkmark a = 3$ (2)
5.2	$\therefore a = 3$ $g(x) = 3^{-x}$	✓ answer/antwoord (1)
	OR/OF	
	$g(x) = \left(\frac{1}{3}\right)^x$	✓ answer/antwoord (1)

5.3	<i>x</i> ≥ 9	✓✓ answer/antwoord	(2)
	OR/OF		(2)
	$f^{-1}(x) = \log_3 x$		
	$ log_3 x = 2 $		
	$x = 3^2 = 9$		
	∴ x ≥ 9	✓✓ answer/antwoord	(2)
			(2)
	OR/OF		
	$\log_3 x \ge 2$		
	$x \ge 3^2$		
	∴ x ≥ 9	✓✓ answer/antwoord	(2)
5.4	Yes/Ja. For every y-value there is only one x such that/ Vir	✓ Yes/Ja	(2)
3.4	elke y-waarde is daar slegs een x sodanig dat $y = f(x)$.	✓ Reason/Rede (2)	
	OR/OF		
		✓ Yes/Ja	
	Yes/Ja. f is a one-to-one relation/is 'n een-tot-een-relasie.	✓ Reason/ <i>Rede</i> (2) [7]	

Question 6 Feb March 2015

6.1	-3≤x≤2	✓ critical values/
		kritiese waardes
		√ notation/notasie
		(2)
6.2	$f: y = a(x-x_1)(x-x_2)$	
	y = a(x+3)(x-2)	
	-8 = a(1+3)(1-2)	$\checkmark y = a(x+3)(x-2)$
		✓ substitute/vervang (1; – 8)
	-8 = -4a	
	2 = a	✓a=2
	y = 2(x+3)(x-2)	
	$y = 2x^2 + 2x - 12$	
	b = 2 and/en $c = -12$	
		$\checkmark b = 2$ and/en
	OR/OF	✓ c = -12
		(5)

$y = a\left(x + \frac{1}{2}\right)^2 + q$			
$0 = a\left(2 + \frac{1}{2}\right)^2 + q$	\rightarrow	$0 = \frac{25}{4}a + q$	(1)
$-8 = a\left(1 + \frac{1}{2}\right)^2 + q$	\rightarrow	$-8 = \frac{9}{4}a + q$	(2)
(1) - (2) : 8 = 4a			
a = 2			

$$q = 0 - \frac{25}{4}(2) = -\frac{25}{2} = -12,5$$

$$y = 2\left(x + \frac{1}{2}\right)^2 - 12\frac{1}{2}$$

$$y = 2\left(x^2 + x + \frac{1}{4}\right) - 12\frac{1}{2}$$

$$y = 2x^2 + 2x + \frac{1}{2} - 12\frac{1}{2}$$

$$y = 2x^2 + 2x - 12$$

$$\therefore b = 2$$
 and $c = -12$

OR/OF

$$\checkmark a = 2$$

$$\checkmark b = 2$$
 and/en
 $\checkmark c = -12$ (5)

$$f'(x) = 2ax + b$$

$$f'\left(-\frac{1}{2}\right) = 2a\left(-\frac{1}{2}\right) + b = 0$$

$$\therefore a = b$$

$$(-3;0): 9a - 3b + c = 0$$

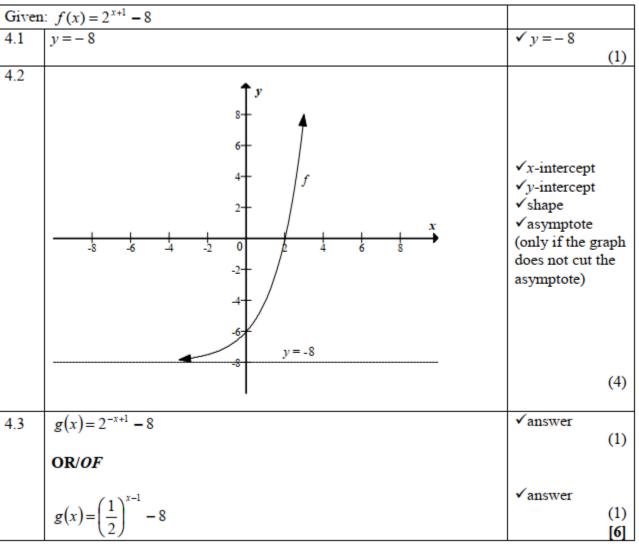
 $\therefore 6a + c = 0$(1)

$$(1;-8): a+b+c=-8$$

 $\therefore 2a+c=-8$(2)

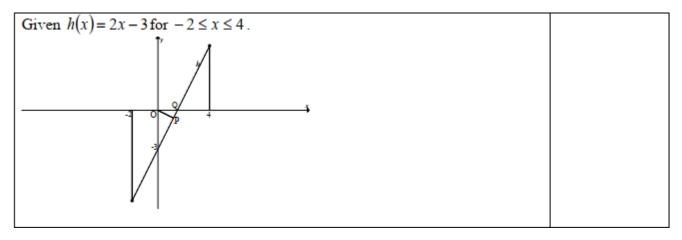
$$(1)$$
 − (2) : $4a$ = 8
∴ a = 2
⇒ b = 2
∴ c = −12

$$\checkmark a = 2$$


$$\checkmark b = 2$$

 $\checkmark c = -12$

6.3	$x = -\frac{3}{2a}$ $x = -\frac{2}{2(2)} = -\frac{1}{2}$	$✓ x = -\frac{1}{2}$ ✓ substitution/substitusie
	$y = \frac{1}{2} - 1 - 12$ $y = -12\frac{1}{2}$ (1 1)	
	$TP\left(-\frac{1}{2}; -12\frac{1}{2}\right)$ OR/OF	✓y-value/waarde (3)


	$TP\left(-\frac{1}{2}; -12\frac{1}{2}\right)$	✓y-value/waarde		
	OR/OF			(3)
	$y = 2[x^{2} + x - 6]$ $y = 2\left[x^{2} + x + \left(\frac{1}{2} \cdot 1\right)^{2} - 6 - \left(\frac{1}{2} \cdot 1\right)^{2}\right]$ $= 2\left[\left(x + \frac{1}{2}\right)^{2} - 6 \cdot 25\right]$	✓ method/metode		
	$= 2\left(x + \frac{1}{2}\right)^2 - 12,5$ $TP\left(-\frac{1}{2}; -12,5\right)$ OR/OF $-3 + 2 \qquad 1$	✓x-value/waarde ✓y-value/waarde		(3)
	$x = \frac{-3+2}{2} = -\frac{1}{2}$ $y = 2\left(-\frac{1}{2}\right) + 2\left(-\frac{1}{2}\right) - 12$	✓ method/ <i>metode</i> ✓ <i>x</i> -value/ <i>waarde</i>		
1 1	$y = -12\frac{1}{2}$ $TP\left(-\frac{1}{2}; -12,5\right)$	✓y-value/waarde		(3)
	OR/OF $f(x) = y = 2x^2 + 2x - 12$			
	$f'(x) = 4x + 2$ $4x + 2 = 0$ $4x = -2$ $x = -\frac{1}{2}$	✓ method/ <i>metode</i>		
1 1	2	✓x-value/waarde		
1 1	$y = 2\left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right) - 12 = -\frac{25}{2}$ $TP\left(-\frac{1}{2}; -\frac{25}{2}\right)$	√y-value/waarde	(3)	

6.4	$x = \frac{13}{2}$	✓✓ answer/i
6.5	f'(x) = 4x + 2 m = f'(1) = 4(1) + 2 m = 6	$\checkmark y' = 4x + 2$ \checkmark subst. $x = 1$ \checkmark answer/antwoord
	m = 0	(3) [15]

Question 4 November 2015

Question 5 November 2015

5 1	Tennintenanta au 0	
5.1	For x-intercepts, $y = 0$ 2x - 3 = 0	
	x = 1,5	✓ x = 1,5
	Q(1,5;0)	$\checkmark y = 0$
5.2	h:	(2)
3.2		1112 - 7
	x = -2: $y = 2(-2) - 3 = -7$	$\checkmark h(-2) = -7$ $\checkmark h(4) = 5$
	x = 4: $y = 2(4) - 3 = 5Domain of h^{-1}: -7 \le x \le 5 OR/OF [-7; 5]$	
		$\checkmark -7 \le x \le 5 \tag{3}$
5.3	T ^y	✓ y-intercept
		on a straight
	7 1,5	line
	0 5	✓ line segment
		✓ accurate
		endpoints (x
		or y or
	OR/OF	both)
	4 2	(3)
	h^{-1}	
	1,5	
	0	
	-2	
5.4	h(x) = 2x - 3	
5.1	m(x) = 2x = 3	
	For the inverse of h ,	
	x = 2y - 3	x+3
	$y = \frac{x+3}{2}$	$\checkmark y = \frac{x+3}{2}$
	$h^{-1}(x) = \frac{x+3}{2}$	
	$h(x) = h^{-1}(x)$	
	$2x-3=\frac{x+3}{2}$	$\checkmark 2x - 3 = \frac{x + 3}{2}$ $\checkmark x = 3$
	2	2
	4x - 6 = x + 3	
	x = 3	✓ x = 3
	OR/OF	(3)

Functions and Graphs Memo

	Functions	and Graphs	Memo	
h(x) = 2x - 3				
h and h^{-1} intersect when	y = x			
.()				$\checkmark h(x) = x$
h(x) = x				(2)
2x - 3 = x				$\checkmark 2x-3=x$
x = 3				$\checkmark h(x) = x$ $\checkmark 2x - 3 = x$ $\checkmark x = 3$
OR/OF				
h(x) = 2x - 3				
For the inverse of h ,				$\checkmark v = \frac{x+3}{}$
x = 2y - 3				2
$y = \frac{x+3}{2}$				
_				
$h^{-1}(x) = x$				$\sqrt{\frac{x+3}{}} = x$
$\frac{x+3}{2} = x$				$\sqrt{\frac{2}{2}} = x$
$\frac{1}{2}$				
				/ ~
x + 3 = 2x				$\checkmark x = 3$

5.5 OP² =
$$(x-0)^2 + (y-0)^2$$

= $x^2 + (2x-3)^2$
= $x^2 + 4x^2 - 12x + 9$
= $5x^2 - 12x + 9$
For OP to be at its minimum, OP² has to be a minimum
Vir OP om minimum te wees, moet OP² 'n minimum wees

$$\frac{d(OP^2)}{dx} = 0 \qquad OR/OF \qquad x = -\frac{b}{2a}$$

$$10x - 12 = 0 \qquad = -\frac{-12}{2(5)}$$

$$\therefore x = \frac{6}{5}$$

Minimum length of OP = $\sqrt{5}\left(\frac{6}{5}\right)^2 - 12\left(\frac{6}{5}\right) + 9 = \sqrt{\frac{9}{5}} \text{ or } \frac{3}{\sqrt{5}} \text{ or } 1,34 \text{ units}$
OR/OF
For minimum distance OP \perp the line
$$m_k = 2 \text{ (given)}$$

$$m_{OP} = \frac{-1}{2}$$

$$\therefore OP \text{ has equation } y = \frac{-1}{2}x$$

Functions and Graphs Memo	
$\frac{-1}{2}x = 2x - 3$	
-x = 4x - 6 $5x = 6$	∠1
$x_P = 1,2$	$\checkmark m_{OP} = \frac{-1}{2}$
$y_P = -\frac{1}{2}(1,2) = -0.6$	✓equation of OP
$OP = \sqrt{(1,2-0)^2 + (-0,6-0)^2}$	$\sqrt{\frac{-1}{2}}x = 2x - 3$
= 1,34 or $\sqrt{1,8}$ units	2 √x-value
	✓ x-value
	✓answer (5)
OR/OF For minimum distance OP ⊥ the line	
$O(0;0)$ $P(x; 2x-3)$ $Q\left(\frac{3}{2};0\right)$	✓ $OP^2 = x^2 + y^2$ ✓ substitute y = 2x - 3
$OP^2 + PQ^2 = OQ^2 \text{(pythag)}$	y=2x-3
$(x-0)^2 + (2x-3-0)^2 + \left(x-\frac{3}{2}\right)^2 + (2x-3-0)^2 = \left(\frac{3}{2}\right)^2$	$\sqrt{10x^2 - 27x + 18}$
$x^{2} + 4x^{2} - 12x + 9 + x^{2} - 3x + \frac{9}{4} + 4x^{2} - 12x + 9 = \frac{9}{4}$	
$10x^2 - 27x + 18 = 0$	
(5x-6)(2x-3)=0	✓x-value
$x = \frac{6}{5} \text{ or } \frac{3}{2}$	
Hence, $x = \frac{6}{5}$ at P	
$OP^2 = x^2 + (2x - 3)^2$	
$= \left(\frac{6}{5}\right)^2 + \left(2\left(\frac{6}{5}\right) - 3\right)^2$	✓answer (5)
$=\frac{36}{25} + \frac{9}{25}$	
$=\frac{9}{5}$	
OP = 1,34	
OR/OF	
For minimum distance OP ⊥ the line	$\sqrt{\tan \hat{Q}} = 2$
$\tan \hat{Q} = 2$	$\checkmark \tan \hat{Q} = 2$ $\checkmark \hat{Q} = 63,43^{\circ}$
$\hat{Q} = 63,43^{\circ}$	✓ sin 63,43°
$\sin 63,43^{\circ} = \frac{OP}{1.5}$	✓ <u>OP</u> 1,5
OP = 1,34	1,5 ✓ answer
Sponsored by Anglo American Platinum 51	Compiled by XI. Education

OR/OF

$$OP = \sqrt{(x-0)^2 + (y-0)^2}$$

$$= \sqrt{(x-0)^2 + (2x-3-0)^2}$$

$$= \sqrt{x^2 + 4x^2 - 12x + 9}$$

$$= \sqrt{5x^2 - 12x + 9}$$

$$\checkmark$$
OP = $\sqrt{(x-0)^2 + (y-0)^2}$

By using the chain rule (which is not in the CAPS):

$$\frac{dOP}{dx} = \frac{1}{2} (5x^2 - 12x + 9)^{\frac{-1}{2}} \cdot (10x - 12)$$

$$0 = \frac{1}{2} (5x^2 - 12x + 9)^{\frac{-1}{2}} \cdot (10x - 12)$$

$$0 = \frac{1}{2} (10x - 12)$$

$$0 = 5x - 6$$

$$x = \frac{6}{5}$$

√x-value

 $OP = \sqrt{5\left(\frac{5}{6}\right)^2 - 12\left(\frac{6}{5}\right) + 9}$

✓answer (5)

OR/OF

For minimum distance OP \perp the line Let the y-intercept be R

OR = 3 units

$$OQ = \frac{3}{2}$$
 units
 $RQ = \frac{3}{2}\sqrt{5}$ (Pythagoras)

3

1,5

Area OQR = $\frac{1}{2}$ × base × \perp height

$$\frac{1}{2}.OR.OQ = \frac{1}{2} \left(\frac{3}{2} \sqrt{5} \right).OP$$

$$\frac{1}{2}.3 \left(\frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} \sqrt{5} \right).OP$$

$$OP = \frac{3}{\sqrt{5}} = 1,34$$

(5)

5.6.1	f'(x) = 2x - 3	
	Turning point at $x = \frac{3}{2}$	✓ Turning
	2	point at $x = \frac{3}{2}$
	$f''(x) = 2 > 0$ or $f''(\frac{3}{2}) > 0$	2
	(-)	$\checkmark f''(x) = 2 > 0$
	f has a local minimum at $x = \frac{3}{2}$	
	f het 'n lokale minimum by $x = \frac{3}{2}$	(2)
	OR/OF	
	$h(x) = f'(x) < 0$ for $x \in (-2; 1.5) \Rightarrow f$ is decreasing on the left of Q / f is dalend links van Q.	✓decreasing left of Q
	$h(x) = f'(x) > 0$ for $x \in (1,5; 4) \Rightarrow f$ is increasing on the right of Q /	√increasing
	f is stygend regs van Q.	right of Q (2)
	$f(x)$ has a local minimum when $x = \frac{3}{2}$	
	f(x) hat 'n labaal minimum by x = 3	
	$\therefore f(x) \text{ het 'n lokael minimum by } x = \frac{3}{2}$	
	OR/OF	
	$f(x) = x^2 - 3x + c$	
	$f(x) = x^2 - 3x + c$	$f(x) = x^2 - 3x + c$
	f has a minimum value since $a > 0$	$f(x) = x^2 - 3x + c$ <pre> ✓ explanation</pre>
	f het 'n minimum waarde omdat $a > 0$	✓ explanation (2)
5.6.2	m = f'(4) = h(4) = 5	√answer
		(1)
		[19]

Question 6 November 2015

6.1.1	T(0;18)	√ (0;18)	
			(1)
6.1.2	$-2x^2 + 18 = 0$	$\checkmark y=0$	
	$-2x^{2} + 18 = 0$ $(x-3)(x+3) = 0$	√ factors	
	Q(3;0)	$\checkmark x = 3$	(2)
	Q (z, v)		(3)
	OR/OF	✓ y= 0	
	$-2x^2 + 18 = 0$	$\checkmark y = 0$ $\checkmark x^2 = 9$ $\checkmark x = 3$	
	$x^2 = 9$	$\checkmark x = 3$	4-5
	Q(3;0)		(3)
	((c, v)		

6.1.3	x-coordinate of S is $4.5/x$ -koördinaat van S is 4.5 By symmetry about the line $x = 4.5/Deur$ simmetrie om die $lyn \ x = 4.5$: $R = (4.5 + 4.5 - 3; 0) = (6; 0)$	$\checkmark x = 6$ $\checkmark y = 0$ (2)
6.1.4	For all $x \in \mathbf{R}$ \mathbf{OR}/\mathbf{OF} $(-\infty, \infty)$	✓✓answer (2)
6.2	If $C(x; y)$ is the centre of the hyperbola/As $C(x; y)$ die middelpunt is van die hiperbool $y = x + 6$ and $x = -2$ $\therefore y = -2 + 6 = 4$ $y = 4$	asymptote $y = 4$ asymptote $x = -2$ shape (increasing hyperbolic function) (4) [12]

Question 4 Feb March 2016

4.1	(0;2)	✓answer	(1)
4.2	.†		(1)
	\		
		√shape	
		√ (0; 2)	
	$y = 1 \tag{0, 2}$	✓asymptote	
	\overrightarrow{x}		
4.3	f(-2) = 5	$\checkmark f(-2)=5$	(3)
	f(-2) = 5 $f(1) = 2^{-1} + 1 = \frac{3}{2}$	$\checkmark f(-2) = 5$ $\checkmark f(1) = \frac{3}{2}$	
	Average gradient = $\frac{f(1) - f(-2)}{1 - (-2)}$	_	
	$=\frac{\frac{3}{2}-5}{3}$		
	3 7	✓ answer	
	$=-\frac{1}{6}$		(3)

4.4	Since the asymptote of f is $y = 1$,		
	the asymptote of $h(x) = 3f(x)$ will be $y = 3$.		
	Omdat die asimptoot van f $y = 1$ is,	✓answer	
		(1)	
	sal die asimptoot van $h(x) = 3f(x)$ $y = 3$ wees.	[8]	

Question 5 Feb March 2016

5.1	/ >2	
5.1	$y = a(x+p)^2 + q$	
	Turning point $(1;-8)$: $y = a(x-1)^2 - 8$	$\checkmark y = a(x-1)^2 - 8$
	Substitute $(0; -4): -4 = a(0-1)^2 - 8$	\checkmark y = a(x - 1) - 8 \checkmark substitute (0; -4)
	-4 = a - 8	▼ substitute (0;-4)
		✓ a = 4
	a = 4 $p = -1$ $q = -8$	$\checkmark a = 4$ $\checkmark p \text{ and } q \text{ values}$
	$y = 4(x-1)^2 - 8$	(4)
5.2	Asymptote is $y = -2$ \Rightarrow $d = -2$	✓ d = -2
	Substitute (1; –8):	
	$-8 = \frac{k}{1+r} - 2$	
	$-8-\frac{1}{1+r}-2$	
	k = -6(1+r)	$\checkmark k = -6 - 6r$
	k = -6 - 6rline 1	
	Substitute $(0; -4)$:	
	$-4=\frac{k}{2}-2$	
	-4 = -2	
	$\frac{k}{}=-2$	
	$\frac{-}{r}$	$\checkmark k = -2r$
	k = -2rline 2	$\checkmark k = -2r$ $\checkmark -6 - 6r = -2r$
	Equating lines 1 and 2:	$\checkmark -6 - 6r = -2r$
	-6-6r = -2r	
	-4r = 6	
	$r = -\frac{3}{2}$	\checkmark value of r
	$r = -\frac{1}{2}$	
	Substituting into line 2 or line 1:	
	$k = (-2)(-\frac{3}{2}) = 3$ $k = -6 - 6(-\frac{3}{2}) = 3$	✓ value of k
5.0	(- /	(6)
5.3	$g(x) \ge f(x)$	✓ 0≤x
	$\therefore 0 \le x \le 1$	✓ x ≤1
5.4	The line $y = k$ must pass through f twice on the positive side of	(2)
3.4	The line $y = k$ must pass through f twice on the positive side of the x-axis./Die lyn $y = k$ moet twee keer deur f aan die positiewe	√ -8 <k< th=""></k<>
	kant van die x-as sny.	✓ k < -4
	-8 < k < -4	(2)
	V N N N T	

Functions and Graphs Memo

5.5	y = -x + c	$\checkmark y = -x + c$
	Substitute the intersection point of the asymptotes, i.e. $\left(\frac{3}{2}; -2\right)$:	
		3
	Vervang die snypunt van die asimptote, m.a.w. $\left(\frac{3}{2}; -2\right)$:	$\sqrt{-2} = -\frac{3}{2} + c$
	(2)	_
	$-2 = -\frac{3}{2} + c$	
	2	✓answer
	$c = -\frac{1}{2}$	(3)
	1	
	$y = -x - \frac{1}{2}$	
	OD/OF	
	OR/OF	
	$y = -x$ is translated $\frac{3}{2}$ units right and 2 units down/	✓ v = -x
	$y = -x$ transleer $\frac{3}{2}$ eenhede na regs en 2 eenhede na onder \Rightarrow	$\checkmark y = -x$ $\checkmark y = -\left(x - \frac{3}{2}\right) - 2$
	2	$\sqrt{y-(y-3)}-2$
	$y = -\left(x - \frac{3}{2}\right) - 2$	$y = \left(x - \frac{1}{2}\right)^{-2}$
		✓answer
	$y = -x - \frac{1}{2}$	(3)
5.6	By symmetry,	
	$Q = \left(\frac{3}{2} + 8 - 2; -2 + \frac{3}{2} - 1\right)$	
	$Q = (\frac{1}{2} + 8 - 2, \frac{1}{2} + \frac{1}{2} - 1)$	$\checkmark x = \frac{15}{1}$
	$=\left(\frac{15}{2};-\frac{3}{2}\right)$	2
	$-\left(\frac{1}{2},-\frac{1}{2}\right)$	$\checkmark x = \frac{15}{2}$ $\checkmark y = -\frac{3}{2}$
		(2)
		[19]

Question 6 Feb March 2016

6.1	$f: y = \frac{1}{4}x^2$		
	$f^{-1}: x = \frac{1}{4}y^2$		✓interchanging x and
	$y^2 = 4x$		$y \\ \checkmark y^2 = 4x$
	$y = \pm \sqrt{4x}$		
	$f^{-1}(x) = -\sqrt{4x}$	OR /OF $f^{-1}(x) = -2\sqrt{x}$	✓answer
			(3)

6.2	(-2; 1)	✓both graphs pass through (0; 0) ✓shape for both
	(1; -2) f ⁻¹	✓ one additional point on both graphs (3)
6.3	Yes. No value of x in the domain of f^{-1} maps onto more than one y -value. Ja. Geen waarde van x in die definisieversameling van f^{-1} assosieer met meer as een y -waarde nie.	✓yes ✓reason (2)
	OR/OF Yes. One to one function./Ja. Een-tot-een-funksie. OR/OF	✓yes ✓reason (2)
	Yes. Vertical line test holds./Ja. Die vertikale lyntoets werk.	✓yes ✓reason (2)

4.1	(0;3)		✓ (0;3) (1)
4.2	$x = -\frac{b}{2a} \qquad \text{or} \qquad$	-2x-2=0	$\sqrt{x} = -\frac{(-2)}{2(-1)}$ or $-2x - 2 = 0$
	$=-\frac{(-2)}{2(-1)}$	$\therefore x = -1$	✓ simplification
	=-1		
	$y = -(-1)^2 - 2(-1) + 3$	or $y = \frac{4ac - b^2}{4a}$	✓ in the context of a turning point
	= 4	$=\frac{4(-1)(3)-(-2)^2}{4(-1)}$	$-(-1)^{2} - 2(-1) + 3$ $\underline{4(-1)(3) - (-2)^{2}}$
			4(-1)
	C(-1; 4)		(3)

4.3	B(1; 0) By symmetry/Deur simmetrie A(-3; 0)	✓ A(-3;0)
	OR/OF	(1)
	$x^2 + 2x - 3 = 0$	
	(x+3)(x-1)=0	
	x = -3 or $x = 1$	(1/(2.0)
	A(-3;0)	✓ A(-3; 0)
4.4	Equation of g:	\-/
	$m = \frac{4-0}{-1+3}$	
	-1+3 =2	✓ m = 2
	y = 2x + q OR/OF $y - 0 = 2(x + 3)$	
	0 = 2(-3) + q or $4 = 2(-1) + q$ $y = 2x + 6$	✓ subs of A(-3;0) or C (-1;4)
	q = 6 or $y - 4 = 2(x + 1)$	
	y = 2x + 6	$\checkmark y = 2x + 6$
	E(0;6)	✓E(0;6)
	C(-1;4)	(and atituding into Histories
	$CE = \sqrt{(0+1)^2 + (6-4)^2}$	✓ substitution into distance formula
	$=\sqrt{5}$ units/2,24 units	√answer
4.5		(6) ✓ -2x-2
4.5	$f'(x) = -2x - 2$. But $m_{tan} = 2$ -2x-2 = 2	$\sqrt{-2x-2}$
	-2x - 2 = 2 $x = -2$	✓ x = -2
	f(-2) = 3	✓ v = 3
	y = 2x + k	▼ y = 3
	3 = 2(-2) + k	
	k = 7	√answer (5)
	OR/OF	
	$-x^2-2x+3=2x+k$	$\sqrt{-x^2-2x+3} = 2x+k$
	$-x^2 - 4x + 3 - k = 0$	(4-1-10
	$x^2 + 4x - 3 + k = 0$	✓standard form
	For equal roots: $\Delta = b^2 - 4ac = 0$	$\checkmark b^2 - 4ac = 0$
	$(-4)^2 - 4(-1)(3-k) = 0$ $(4)^2 - 4(1)(k-3) = 0$	√ substitution
	16+12-4k=0 or $16-4k+12=0$	✓answer
	k = 7 $k = 7$	(5)

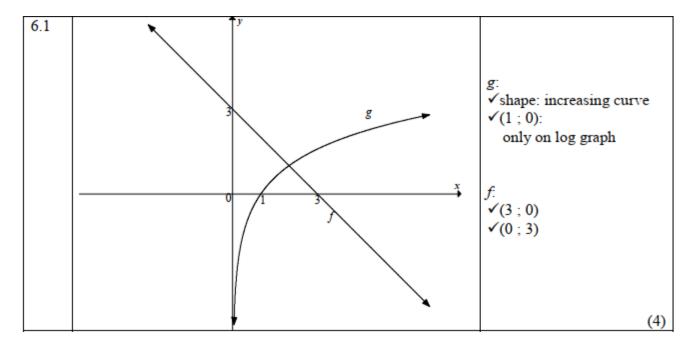
4.6	$g: \qquad y = 2x + 6$	
	g^{-1} : $x = 2y + 6$	$\checkmark x = 2y + 6$
	2y = x - 6	
	$y = \frac{x-6}{2}$ or $y = \frac{x}{2} - 3$	$\checkmark y = \frac{x - 6}{2} \text{ or } y = \frac{x}{2} - 3$
	2	(2)
4.7	$g(x) \ge g^{-1}(x)$	_
	$2x+6 \ge \frac{x-6}{2}$	$\checkmark 2x + 6 \ge \frac{x - 6}{2}$
	$4x + 12 \ge x - 6$	$\checkmark 4x + 12 \ge x - 6$
	$3x \ge -18$	✓ x ≥ -6
	$x \ge -6$	(3)
		[21]

5.1	r = 2	$\checkmark r = 2 \tag{1}$
5.2	$g(x) = 2^x + 2$	
	$g(0) = 2^0 + 2 = 3$	$\checkmark g(0) = 2^0 + 2$
	B(0;3)	✓ y = 3
	3-3-+2	✓ substitute B(0; 3) and $q = 2$
	$3 = \frac{3}{0-p} + 2$	✓ p = -3
	p = -3	(4)
5.3	at A: $x = -3$	✓ at A : $x = -3$ (<i>p</i> -value)
	$y = 2^{-3} + 2 = 2\frac{1}{8}$	✓ substitute $x = -3$ into exponential eqution
	$A\left(-3; 2\frac{1}{8}\right) \text{ or } A\left(-3; \frac{17}{8}\right) \text{ or } A\left(-3; 2,125\right)$	✓ y-value (3)
5.4	$-3 < x \le 0$ OR/ OF $(-3; 0]$	$\sqrt{-3} < x$
		$\checkmark x \le 0 \tag{2}$
5.5	$f(x) = \frac{3}{x+3} + 2$	
	$f(x-2) = \frac{3}{x-2+3} + 2$	✓ substitution of $x-2$
	$h(x) = \frac{3}{x+1} + 2$	$\checkmark h(x) = \frac{3}{x+1} + 2$
		(2) [12]

May June 2016

4.1	y = 0	$\checkmark y = 0$
4.2	P(0 - 1)	(1)
4.2	R(0; 1)	✓ answer (1)
4.0	$y = a^x$	(1)
4.3		
	$9 = a^2$	✓ substitution
	$\therefore a = 3$	✓ a = 3
		(2)
4.4	DP = 2 - b	
	$y = 3^x$	
	$\frac{1}{81} = 3^b$	1 h
	81	$\sqrt{{81}} = 3^{\circ}$
	$3^{-4} = 3^b$	$\checkmark \frac{1}{81} = 3^{b}$ $\checkmark 3^{-4} \text{ or use of logs}$ $\checkmark b = -4$
	b = -4	✓ b = -4
	DP = 2 - (-4)	
	= 6 units	✓ DP = 6 units
		(4)
4.5	h(x+2) + k = 0	
	h(x+2) = -k	
	$0 < -k < \frac{1}{81}$	\checkmark $-k < \frac{1}{}$ or $k > -\frac{1}{}$
	81	81 81
	$-\frac{1}{81} < k < 0$	$\checkmark \checkmark -k < \frac{1}{81} \text{ or } k > -\frac{1}{81}$ $\checkmark -\frac{1}{81} < k < 0$
		(3)
		[11]

Question 5


5.1	$f(x) = -x^2 + 4x - 3$			
	f'(x) = 0 or $x =$	$=-\frac{4}{2(-1)}$	$\sqrt{-2x+4} = 0$ or	
		c = 2	$x = -\frac{4}{2(-1)}$	
	x = 2		-(-)	
	$y = -(2)^2 + 4(2) - 3$		$\checkmark y = -(2)^2 + 4(2) - 3$	
	=1			(2)
	B(2;1)			
	OR/OF			

	$-x^2 + 4x - 3 = 0$		
	$x^2 - 4x + 3 = 0$		
	(x-3)(x-1)=0		
	x = 3 or $x = 1$		
	3+1	3+1	
	$x = \frac{3+1}{2}$	$\checkmark x = \frac{3+1}{2}$	
	x = 2		
	$y = -(2)^2 + 4(2) - 3$	(2)2 (2) 2	
	=1	$y = -(2)^2 + 4(2) - 3$	(2)
	B(2;1)		(2)
5.2	Range/Waardeversameling: $y \le 1$	✓ y ≤ 1	
	OR/OF		(1)
	OROF		(1)
	Range/Waardeversameling: $y \in (-\infty; 1]$	√ (-∞; 1]	
			(1)
5.3	$x \le -1$ or $x > 2$	✓ critical values $\checkmark x \le -1$ or $x > 2$	
	OR/OF	V XS-1 OI X/2	(2)
			(2)
	$(-\infty;-1]\cup(2;\infty)$	✓ critical values	
		$\checkmark x \le -1$ or $x > 2$	(2)
5.4	(x-y)(y+4)=3		(2)
3.4	(x-p)(y+t)=3 Vertical asymptote of $h(x)$ /vertikale asimptoot at $x=2$		
	Translation 4 units to the left / Translasie 4 eenhede links	✓ x = -2	
	x = 2 - 4 = -2 is the equation of the vertical asymptote of		(1)
	h(x+4)		
	x = 2 - 4 = -2 is die vergelyking van die vertikale asimptoot		
	OR/OF		
	$h(x) = \frac{3}{x - 2 + 4} + 1$		
	$=\frac{3}{1}+1$		
	x+2		
	x = -2 is the equation of the vertical asymptote / is die vergelyking	$\checkmark x = -2$	
	van die vertikale asimptoot	× x = -2	(1)
			(-)

Functions and Graphs Memo

5.5	(x-p)(y+t)=3		
	$(x-p)(y+t) = 3$ $(y+t) = \frac{3}{(x-p)}$ $y = \frac{3}{x-p} - t$ B(2;1) Point of intersection of the asymptotes	$\checkmark \frac{3}{x-p}$ $\checkmark -t$	
	Snypunt van die asimptote $p = 2$ $-t = 1$	✓ p = 2	
	t = -1	✓ t = -1	(4)
5.6	x-intercepts of f / x -afsnitte van f :		
	$x^{2} - 4x + 3 = 0$ (x-3)(x-1) = 0 x = 1 or $x = 3g'(x) < 0 for x \in R; x \ne 2$	✓ both critical values	
	Hence $f(x) < 0$ $x \le 1$ or $x \ge 3$ OR/OF $(-\infty; 1] \cup [3; \infty)$	$\checkmark x \le 1$ $\checkmark \text{ or }$ $\checkmark x \ge 3$	
			(4) [14]

Question 6 May June 2016

Functions and Graphs Memo

6.2	$y = \log_2 x$	
	$g^{-1}: x = \log_2 y$	✓ interchange x and y
	$v = 2^x$	$\checkmark y = 2^x$
	*	(2)
6.3	$\log_2(3-x) = x$	
	$2^x = 3 - x$	$\checkmark \checkmark 2^x = -x + 3$
	$2^x = -x + 3$	
	Reflect the graph of g about the line $y = x$ to obtain g^{-1} and	
	determine the point of intersection of f and g^{-1} / Reflekteer die	✓ point of intersection of
	grafiek van g om die lyn $y = x$ en bepaal die snypunt van f and	f and g^{-1}
	g ⁻¹	(3)
6.4		(1)
6.4	x = 1	✓ answer (1)
		[10]

Question 7 November 2014

Question /	November 2014
$7.1 A = P(1-i)^n$	
$72\ 500 = 145\ 000\ (1-i)^5$	✓ substitution/substitusie
$i = 1 - \sqrt[5]{\frac{72500}{145000}}$	
V115000	✓ writing in terms of i herskryf in terme van i
= 0,1294 ∴ Rate of interest/Rentekoers is 12,94 % p.a./p.j.	✓ answer/antwoord (3)
Itale of interestrictions is 12,5 1 70 p.a.spy.	
OR/OF	
$(1-i)^5 = \frac{1}{2}$	✓ substitution/substitusie
$\therefore i = 1 - \left(\frac{1}{2}\right)^{\frac{1}{5}}$	✓writing i.t.o i
i = 0,1294	
$\therefore \text{ Rate of interest/} Rentekoers is 12,94 \% \text{ p.a./} p.j.$ 7.2.1	✓answer (3)
7.2.1 $P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $500\ 000 = \frac{x \left[1 - \left(1 + \frac{0.12}{12}\right)^{-240}\right]}{\frac{0.12}{12}}$	$ √ i = \frac{0.12}{12} $ $ √ n = 240 $ ✓ substitution into correct formula
$500000 \times \frac{0,12}{12}$	Tormula
$x = \frac{12}{\left[1 - \left(1 + \frac{0.12}{12}\right)^{-240}\right]}$ $x = R5505,43$	✓answer/antwoord (4)
7.2.2 $P = \frac{x[1 - (1+i)^{-n}]}{i}$	
$6000 \left 1 - \left(1 + \frac{0.12}{1.000} \right)^{-n} \right $	√ 6000
$500000 = \frac{6000 \left[1 - \left(1 + \frac{0,12}{12} \right)^{-n} \right]}{\frac{0,12}{12}}$	✓ substitute into correct
$\frac{0,12}{12}$	formula/substitusie in
$\frac{500000}{6000} \times 0.01 = 1 - (1.01)^{-n}$	korrekte formule
$(1,01)^{-n} = 1 - \frac{5}{6}$	
$-n = \frac{\log \frac{1}{6}}{\log 1{,}01}$ $n = 180{,}07$	✓ use of logs/gebruik van logs
.: Melissa settles the loan in 181 months	✓answer/antwoord (4)

7.2.3	Samuel	✓Samuel	\neg
	He is paying off his loan over a longer period thus more	✓reason/rede	
	interest will be paid./Hy betaal sy lening oor 'n langer	(2)	1
	tydperk af, dus sal hy meer rente betaal.		
	OR/OF		
	Samuel	✓Samuel	
	He will pay/Hy betaal R5505,43 × 240 – R500 000 =	✓reason/rede	
	R821 303,20	(2))
	She will pay between/Sy sal tussen R580 000 and/en		
	R586 000,00 betaal.	[13]	

Question 7 Feb March 2015

7.1.1	R400×(44×12)	✓ R400×(44×12)	
	= R211200	✓R211200	
			(2)
7.1.2	$F = \frac{x \left[(1+i)^n - 1 \right]}{x}$	✓ x = 400	
	l l	✓ n = 528	
	[(0.08) ⁵²⁸]	$\sqrt{i} = \frac{0.08}{12}$	
	$ 400 1 + \frac{332}{12} -1 $	✓ substitution into correct	
	=	formula/substitusie in	
	$=\frac{400\left[\left(1+\frac{0.08}{12}\right)^{528}-1\right]}{\frac{0.08}{12}}$	korrekte formule	
	= R1 943 524,42	✓answer/antwoord	
			(5)
7.1.3	$P = \frac{x[1 - (1 + i)^{-n}]}{x}$	✓ P = 2000000	
	1	$\sqrt{n} = 300 \text{ and/en } i = \frac{0.1}{12}$	
	$\begin{bmatrix} 1 & (1 & 0.1)^{-300} \end{bmatrix}$		
	$2000000 = \frac{x \left[1 - \left(1 + \frac{0,1}{12} \right)^{-300} \right]}{\frac{0,1}{12}}$	✓ substituting into correct	
	2000000 = 0.1	formula/substitusie in korrekte formule	
	12	korrekie jormule	
	x = R18174,01	✓ answer/antwoord	
			(4)
	OR/OF		
	$\sqrt{\left(1+\frac{0.1}{1+0.$		
	$2000000 \left(1 + \frac{0,1}{12}\right)^{300} = \frac{x \left(1 + \frac{0,1}{12}\right)^{300} - 1}{0,1}$	✓P = 2000000	
	$2000000\left(1+\frac{1}{12}\right) = \frac{0.1}{0.1}$	$\sqrt{n} = 300 \text{ and/en } i = \frac{0.1}{1.2}$	
	12	$\sqrt{n} = 300 \text{ and/en } i = \frac{1}{12}$	
	x = R18174, 01	✓equating/stel gelyk	
		✓ answer/antwoord	
		- answer/antwoora	(4)
		1	(1)

7.2	Let P _X and P _Y be the populations of the two towns at the beginning of 2010./Laat P _X en P _Y die bevolkings wees		
	van die twee dorpe aan die begin van 2010.		
	1	✓ equating/stel gelyk	
	$A_X = A_Y$	$\checkmark A_X = P_X (1-0.08)^3$	
	$P_X (1 - 0.08)^3 = P_Y (1 + 0.12)^3$	✓ equating/stel gelyk ✓ $A_X = P_X (1-0.08)^3$ ✓ $A_Y = P_Y (1+0.12)^3$	
	$P_X = (1+0.12)^3$		
	$\frac{1}{P_{Y}} = \frac{1}{(1-0.08)^{3}}$		
	_ 1,404	✓ answer/antwoord	(4)
	0,778		[15]
	=1,8:1		- 1

Question 7 November 2015

7.1	R450 000	✓answer
		(1)
7.2	$A = P(1-i)^n$	
	$f(x) = 450000(1-i)^x$	✓ substitution of 450 000 into correct formula
	$243\ 736,90 = 450000(1-i)^4$	✓ substitution of (4; 243 736,90) into correct formula
	$i = 1 - \sqrt[4]{\frac{243\ 736,90}{450000}}$ $i = 0,1421$	✓ making <i>i</i> the subject
	The rate of depreciation is 14,21% p.a. Die waardeverminderingskoers is 14,21% p.j.	✓answer (4)
7.3	At T:	1,1
	$A = P(1+i)^n$	
	$g(x) = 450000(1+i)^x$	$\checkmark i = 0.081 \& n = 4$
	$a = 450000(1+0.081)^4$	✓ correct substitution into formula ✓ answer
	= R614490,66	(3)

Future Value = R614 490, 66 - R243 736, 90
= R370 753, 76
Let x be the value of monthly payment
$$F_{v} = \frac{x[(1+i)^{n} - 1]}{i}$$

$$\sqrt{x} = 36$$

$$\sqrt{x}$$

Question 7 Feb March 2016

7.1.1	Quarterly interest rate/Kwartaallikse rentekoers	
	$=\frac{10\%}{4}$	
	4	✓answer
	= 2,5%	(1)
7.1.2	$A = P(1+i)^n$	
	` '	√n = 8
	$=5000\left(1+\frac{2.5}{100}\right)^{2x4}$	$\sqrt{5000}\left(1+\frac{2.5}{100}\right)^{2c4}$
	= R6092,01	✓answer (3)
7.2.1	$P_v = \frac{x[1-(1+i)^{-n}]}{x}$	(-)
	$800000 = \frac{10000 \left[1 - \left(1 + \frac{0.14}{12}\right)^{-\kappa}\right]}{\frac{0.14}{12}}$	$✓ i = \frac{0.14}{12}$ ✓ substitute into present value formula
	$\frac{800\ 000}{10\ 000} \times \frac{0.14}{12} = 1 - \left(1 + \frac{0.14}{12}\right)^{-n}$ $(. 0.14)^{-n} . 800\ 000 0.14$	*
	$\left(1 + \frac{0.14}{12}\right)^{-\kappa} = 1 - \frac{800\ 000}{10\ 000} \times \frac{0.14}{12}$	$\left(1 + \frac{0.14}{12}\right)^{-1} = 1 - \frac{800000}{10000} \times \frac{0.14}{12}$
	$-n = \frac{\log \left[1 - \frac{800000 \times \frac{0,14}{12}}{10000}\right]}{\log \left(1 + \frac{0,14}{12}\right)}$ $n = 233,4699962$	✓ use of logs
	Motloi can make 233 withdrawals of R10 000./Motloi kan 233 onttrekkings van R10 000 maak.	✓233 (5)

7.2.2
(a)
$$A - F_v = 800000 \left(1 + \frac{0,14}{12}\right)^{48} - \frac{10000 \left[\left(1 + \frac{0,14}{12}\right)^{48} - 1\right]}{\frac{0,14}{12}}$$

$$= 1 396 005,54 - 638 577,36$$

$$= R757428$$
OR/OF
$$\sqrt{n} = 48 \text{ in both formulae}$$

$$\sqrt{i} = \frac{0,14}{12} \text{ in both formulae}$$

$$\sqrt{substitution into both formulae}}$$

$$\sqrt{n} = 48 \text{ in both formulae}$$

$$\sqrt{n} = 48 \text{ in both fo$$

$$P_{v} = \frac{x \left[1 \cdot (1+i)^{-n} \right]}{i}$$

$$= \frac{10000 \left[1 - \left(1 + \frac{0.14}{12} \right)^{-185,4699962...} \right]}{\frac{0.14}{12}}$$

$$= R757428$$

$$7.2.2 \text{ Let the purchase price of the house be } y./Laat \ die \ koopprys \ van \ die \ huis \ y \ wees.}$$

$$757 \ 428 = 0.3y$$

$$y = \frac{757 \ 428}{0.3}$$

$$= R2 \ 524 \ 760$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

$$\sqrt{1000} \left(\frac{1 \cdot \left(1 + \frac{0.14}{12} \right)^{-185,4699962...}}{\frac{0.14}{12}} \right)$$

6.1	$A = P(1-i)^n$	
	$\frac{2}{3}P = P(1 - 0.047)^n$	\checkmark A = $\frac{2}{3}$ P
	$\frac{2}{3} = (1 - 0.047)^n$	✓ substitution into correct
	$\log \frac{2}{3} = n \log(1 - 0.047)$	formula
	$n = \frac{\log \frac{2}{3}}{\log(1 - 0.047)}$ $n = 8.42 \text{ years}$	√logs √answer (4)
6.2.1	The book value of the tractor after 5 years/Die	(4)
0.2.1	book value of the tractor after 5 years Die bookwaarde van die trekker na 5 jaar Book value = $x(1-0.2)^5$ or $x(0.8)^5$ = 0.32768 x	✓ $x(1-0.2)^5$ or $x(0.8)^5$ ✓ $0.32768x$ (2)
6.2.2	Price of new tractor after 5 years/Prys van nuwe trekker	(2)
	na 5 jaar	
	Book value = $x(1+0.18)^5$ or $x(1.18)^5$	$\sqrt{x(1+0.18)^5}$ or $x(1.18)^5$
	= 2,28776x	✓ 2,28776 <i>x</i>
622	L S I	(2)
6.2.3	$F = \frac{x[(1+i)^n - 1]}{x}$	$\checkmark i = \frac{0,10}{12}$
	0000 (1, 0,10) 00]	✓ n = 60
	$8000 \left(1 + \frac{0,10}{12} \right)^{60} - 1$	✓ subst. into future value
	= 0,10	formula
	12 PG10, 406.50	
	= R619 496,58	✓ answer
		(4)
6.2.4	Sinking fund = New tractor price - Scrap value	
	Delgingsfonds = Nuwe trekker se prys – boekwaarde	✓ 619496,58
	$619496,58 = x(1+0,18)^5 - x(1-0,2)^5$	$\checkmark x(1+0.18)^5 - x(1-0.2)^5$
	$619496,58 = x[(1,18)^5 - (0,8)^5]$	✓ common factor x
	$x = \frac{619496,58}{[(1,18)^5 - (0,8)^5]}$	
	x = R316 057,15	
	x = R 316 000	✓ R316 000
	OR/OF	(4)

619496,58 =
$$x(2,28776) - x(0,32768)$$

619496,58 = $x[1,96008]$
 $x = \frac{619496,58}{1,96008}$
 $x = R316 056,78$
 $x = R316 000$
 \checkmark R316 000

(4)

[16]

Question 7 November 2016

7.1	$A = P(1+i)^n$		
	$=250000\left(1+\frac{0,15}{12}\right)^2$	✓ substituting i and n values in correct	
	= R256 289,06	formula	
		✓ answer	(2)
7.2	$P = \frac{x[1 - (1 + i)^{-n}]}{x}$		
	$256 \ 289,06 = \frac{x \left[1 - \left(1 + \frac{0,15}{12}\right)^{-46}\right]}{\frac{0,15}{12}}$	$ √ i = \frac{0.15}{12} $ $ √ n = 46 $ ✓ substitution into correct formula	
	$3203,6133 = x \left[1 - \left(1 + \frac{0,15}{12} \right)^{-46} \right]$ $x = R \ 7 \ 359,79 \text{per month}$ OR/OF	✓ answer	(4)
		√ i = 0,15	
	$250000 = \frac{x \left(1 + \frac{0,15}{12}\right)^{-2} \left[1 - \left(1 + \frac{0,15}{12}\right)^{-46}\right]}{\frac{0,15}{12}}$	$ √ i = \frac{0.15}{12} $ $ √ n = 46 $ $ √ substitution into correct formula $	
	x = R 7 359,79	✓ answer	(4)

I www.		
7.3	$256 \ 289,06 = \frac{9000 \left[1 - \left(1 + \frac{0,15}{12}\right)^{-n}\right]}{0,15}$	✓x = 9 000
	$\frac{256\ 289,06 = \frac{0,15}{12}}{}$	✓ substitute into correct formula
	$\left(1 + \frac{0.15}{12}\right)^{-n} = 0.6440429722$	
	$-n\log\left(1+\frac{0.15}{12}\right) = \log 0.6440429722$	✓ use of logs
	\ \ \(\tau_{-1} \)	$\checkmark n = 35,42$
	$n = 35,41872568 \text{ months}/maande}$	
	∴ 36 payments are required ∴ 36 paaiemente moet betaal word ∴ Thabiso will pay his loan off 10 months sooner./Thabiso los sy lening 10 maande vroeër af.	✓ 10 months
	OR/OF	(5)
	$256289,06\left(1+\frac{0,15}{12}\right)^{n} = \frac{9000\left[\left(1+\frac{0,15}{12}\right)^{n}-1\right]}{\frac{0,15}{12}}$ $3203,61325\left(1+\frac{0,15}{12}\right)^{n} = 9000\left(1+\frac{0,15}{12}\right)^{n} - 9000$	✓ 9 000 ✓ substitute into correct formula
	$9000 = 5796,38675 \left(1 + \frac{0,15}{12}\right)^{n}$ $n = \log_{\left(1 + \frac{0,15}{12}\right)} 1,5523691425$	✓ use of logs ✓ n =35,42
	n = 35,41872568	
	 ∴ 36 payments are required ∴ 36 paaiemente moet betaal word ∴ Thabiso will pay his loan off 10 months sooner./Thabiso los sy lening 10 maande vroeër af. 	✓ 10 months (5)
7.4	The balance of his loan after the 35 th payment was made: Die balans van sy lening nadat die 35 ^{ste} paaiement betaal is:	
	Balance = $256289,06\left(1 + \frac{0,15}{12}\right)^{35} - \frac{9000\left(\left(1 + \frac{0,15}{12}\right)^{35} - 1\right)}{\frac{0,15}{12}}$ = R 3 735,45	✓ 256289,06 $\left(1 + \frac{0,15}{12}\right)^{35}$ ✓ $\frac{9000\left(\left(1 + \frac{0,15}{12}\right)^{35} - 1\right)}{\frac{0,15}{12}}$
	Final instalment = $3735,45\left(1+\frac{0,15}{12}\right)$ = R 3 782,14	✓ 3 735,45 $\left(1 + \frac{0,15}{12}\right)$ ✓ answer
	OR/OF	v answer (4)

$$P = \frac{x[1 - (1 + i)^{-n}]}{i}$$
Final instalment
$$= \frac{9000 \left[1 - \left(1 + \frac{0.15}{12}\right)^{-0.41872568}\right]}{\frac{0.15}{12}} \left(1 + \frac{0.15}{12}\right)$$

$$= R3782,14$$

$$\left(1 + \frac{0.15}{12}\right)$$

$$= R3782,14$$

$$(4)$$
OR/OF

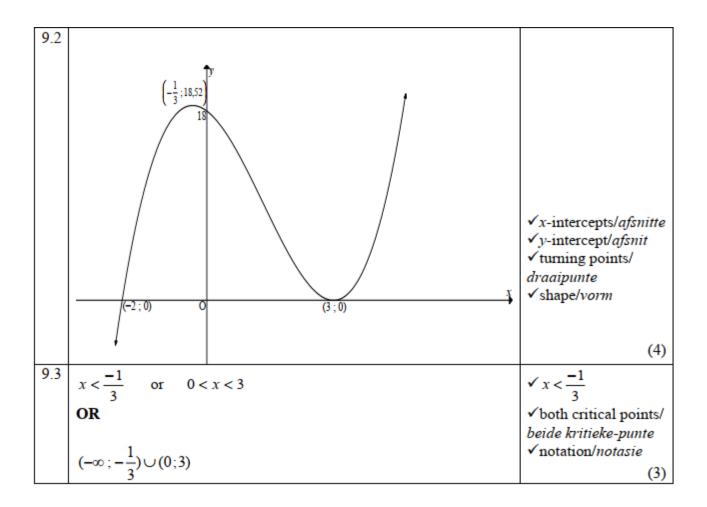
Balance =
$$256289,06\left(1+\frac{0,15}{12}\right)^{36} - \frac{9000\left(\left(1+\frac{0,15}{12}\right)^{30}-1\right)}{\frac{0,15}{12}}$$

= R - 5 217,86
Final payment = $9000 - 5217,86$
= R 3 782,14

 $\checkmark 256289,06\left(1+\frac{0,15}{12}\right)^{36}-1$
 $\checkmark 9000\left(\left(1+\frac{0,15}{12}\right)^{36}-1\right)$
 $\checkmark 9000 - 5217,86$
 $\checkmark answer$

(4)

Question 8 November 2014


8.1	$f(x+h) = (x+h)^3 = (x^2 + 2xh + h^2)(x+h)$	
	$= x^3 + x^2h + 2x^2h + 2xh^2 + h^2x + h^3$	
	$= x^3 + 3x^2h + 3xh^2 + h^3$	
	$f(x+h) - f(x) = x^3 + 3x^2h + 3xh^2 + h^3 - x^3$	
	$= 3x^2h + 3xh^2 + h^3$	✓ simplifying/vereenvouding
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula/formule
	$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$	✓ subst. into formula/subst. in formule
	$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$	✓ factorization/faktorisering
	$= \lim_{h \to 0} \left(3x^2 + 3xh + h^2\right)$ $= 3x^2$	✓ answer/antwoord (5)
	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula/formule
	$= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$	✓ subst. into formula/subst. in formule
	$= \lim_{h \to 0} \frac{(x+h)(x+h)^2 - x^3}{h}$	
	$= \lim_{h \to 0} \frac{(x+h)(x^2 + 2xh + h^2) - x^3}{h}$	
	$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$	✓ simplifying/vereenvoudiging
	$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$	✓ factorization/faktorisering
	$= \lim_{k \to 0} (3x^2 + 3xh + h^2)$	
	$=3x^{2}$	✓ answer/antwoord
	OR	(5)

$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula/formule
$= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$	✓ subst. into formula/subst. in formule
$= \lim_{h \to 0} \frac{(x+h-x)(x^2+2xh+h^2+x^2+xh+x^2)}{h}$	✓ factorization/faktorisering
$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$	
$= \lim_{h \to 0} (3x^2 + 3xh + h^2)$ $= 3x^2$	✓ simplifying/vereenvoudiging ✓ answer/antwoord
	(5)

8.2	$f'(x) = 4x + 2x^3$	$\checkmark 4x$ $\checkmark 2x^3$
72		(2)
8.3	$y = x^{12} - 2x^6 + 1$ $\frac{dy}{dx} = 12x^{11} - 12x^5$	✓ simplification/vereenvoudiging ✓ derivative/afgeleide
	$=12x^{5}(x^{6}-1)$ $=12x^{5}\sqrt{y}$	✓ factors/faktore
	-124 43	(3)
8.4	$f(x) = 2x^{3} - 2x^{2} + 4x - 1$ $f'(x) = 6x^{2} - 4x + 4$ $f''(x) = 12x - 4$	✓ first derivative/eerste afgeleide ✓ second derivative/tweede afgeleide
	f is concave up when/is konkaaf op as $f''(x) > 0$ $\therefore 12x - 4 > 0$	$\checkmark f''(x) > 0$
	12x > 4	102
	$x > \frac{1}{3}$	$\checkmark x > \frac{1}{3} \tag{4}$
	***	[14]

Question 9 November 2014

9.1	$f'(x) = 3x^2 - 8x - 3 = 0$	✓ derivative/afgeleide
		✓ derivative/
		afgeleide = 0
	(3x+1)(x-3)=0	✓ factors/faktore
	$x = -\frac{1}{3} \qquad \qquad \text{or} \qquad x = 3$	✓x-values/waardes
	$y = \frac{500}{27}$ (or $y = 18\frac{14}{27}$ or 18,52) $y = 0$	√√each y- values/elke y-waarde
	Turning points are/Draaipunte is $\left(-\frac{1}{3}; \frac{500}{27}\right)$ and $(3; 0)$	(6)

Question 10 November 2014

10.1	l + 2h = 40		
	l = 40 - 2h	✓answer (1)	
10.2	2b + 2h = 100	$\checkmark 2b + 2h = 100$	
	b = 50 - h	$\checkmark b = 50 - h$	
	V = lbh	✓volume formula	
	V = h(40 - 2h)(50 - h)	(3)	
10.3	$V = (50h - h^2)(40 - 2h)$		
	$V = 2h^3 - 140h^2 + 2000h$	✓ simplifying/vereenvoudig	
	$V' = 6h^2 - 280h + 2000 = 0$	✓ derivative / afgeleide	
	$h = \frac{280 \pm \sqrt{(-280)^2 - 4(6)(2000)}}{2(6)}$		
	$h \neq 37,86$ or $h = 8,80$	✓√h-values in any form /	
	\therefore for a box as large as possible, $h = 8.80 \mathrm{cm}$	h-waardes in enige vorm	
	vir die grootste moontlike boks = 8,80 cm	✓answer/antwoord	
	vii die grootste moontine ooks 0,00 cm	(5)	
		[9]	

Question 8 Feb March 2015

8.1	$f(x+h) = 2(x+h)^2 + 4$	(2.1
	$=2x^2+4xh+2h^2+4$	$\checkmark 2x^2 + 4xh + 2h^2 + 4$
	$f(x+h) - f(x) = 2x^2 + 4xh + 2h^2 + 4 - 2x^2 - 4$	
	$=4xh+2h^2$	$\checkmark 4xh + 2h^2$
	$f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2}{h}$	
	$= \lim_{h \to 0} \frac{h(4x + 2h)}{h}$	$\checkmark \lim_{h\to 0} \frac{h(4x+2h)}{h}$
	$= \lim_{h \to 0} (4x + 2h)$	k→0 h
	$= \lim_{k \to 0} (4x + 2n)$	
	= 4x	✓ 4x (4)
8.2.1	$f(x) = -3x^{2} + 5\sqrt{x}$ $f(x) = -3x^{2} + 5x^{\frac{1}{2}}$ $f'(x) = -6x + \frac{5}{2}x^{-\frac{1}{2}}$	$\sqrt{5}x^{\frac{1}{2}}$
	$f(x) = -3x^2 + 5x^{\frac{1}{2}}$	$\sqrt{5x^{\frac{1}{2}}}$ $\sqrt{-6x}$ $\sqrt{\frac{5}{2}x^{-\frac{1}{2}}}$
	5 -1	$\sqrt{\frac{5}{x}} x^{\frac{1}{2}}$
	$f'(x) = -6x + \frac{5}{2}x^{-\frac{1}{2}}$	_
8.2.2		(3)
	$p(x) = \left(\frac{1}{x^3} + 4x\right)^2$	
	$=\frac{1}{x^6} + \frac{8}{x^2} + 16x^2$	1 8 .
	$= \frac{1}{x^6} + \frac{1}{x^2} + 10x$	$\sqrt{\frac{1}{x^6} + \frac{8}{x^2} + 16x^2}$
	$=x^{-6}+8x^{-2}+16x^{2}$	$\checkmark x^{-6} + 8x^{-2} + 16x^2$
	$p'(x) = -6x^{-7} - 16x^{-3} + 32x$	✓✓ answer/antwoord (4)
	OR/OF	
	$p(x) = (x^{-3} + 4x)^2$	
	by making use of the chain rule:	
	$p'(x) = 2(x^{-3} + 4x)(-3x^{-4} + 4)$	$\checkmark \checkmark 2(x^{-3} + 4x)$ $\checkmark \checkmark (-3x^{-4} + 4)$
	$p'(x) = -6x^{-7} - 16x^{-3} + 32x$	
8.3.1	1/(-) 2-2 14 14	(4)
8.3.2	$h'(x) = 3x^2 - 14x + 14$	✓ finding/kry h'(x) (1) ✓ derivative equal to/
0.5.2	At/By B: $h'(x) = 0$	afgeleide gelyk aan 0
	$3x^2 - 14x + 14 = 0$	
	$x = \frac{14 \pm \sqrt{(-14)^2 - 4(3)(14)}}{2(3)}$	✓ substitution into correct formula/substitusie
	2(3)	in korrekte formule
	=1,45 or 3,22	✓x-value of/x-waarde
	n/a	van 1,45 (3)

8.3.3	$x^3 - 7x^2 + 14x - 8 = (x - 1)(x^2 - 6x + 8)$	✓ (x-1)
	=(x-1)(x-2)(x-4)	$\sqrt{x^2-6x+8}$ $\sqrt{(x-2)(x-4)}$
	C(4;0) OR/OF	✓ coordinates of/koördinate van C (4)
	$x_c > 3,22$ $h(4) = (4)^3 - 7(4)^2 + 14(4) - 8 = 0$ $\therefore x_c = 4$	$\checkmark x_c > 3,22$ \checkmark substitution of/ substitusie van 4 $\checkmark h(4) = 0$ $\checkmark x_c$ (4)
8.3.4	$h'(x) = 3x^2 - 14x + 14$ h''(x) = 6x - 14 6x - 14 < 0 6x < 14 $\therefore x < \frac{7}{2}$	$\checkmark h''(x) = 6x - 14$ $\checkmark 6x - 14 < 0$
	$\therefore x < \frac{7}{3}$ $\therefore k = \frac{7}{3}$	$\checkmark k = \frac{7}{3} \tag{3}$ [22]

Question 9 Feb March 2015

9.1	$\pi r^2 h = 6$	_	
	{k} 6	$\checkmark h = \frac{6}{2}$	(1)
	$n = \frac{1}{\pi r^2}$	π· -	

Differential Calculus Memo

9.2	$S = 10(2\pi r^2 + 2\pi rh + 4\pi r^2)$	$\checkmark \checkmark 10(2\pi r^2 + 2\pi rh + 4\pi r^2)$
	$=10[2\pi rh + 6\pi r^2]$	(20 1 (0 1
	$=20\pi rh + 60\pi r^2$	$\checkmark 20\pi rh + 60\pi r^2$
	$= 20\pi r \left(\frac{6}{\pi r^2}\right) + 60\pi r^2$	✓ substitution/substitusie
	$=60\pi r^2 + \frac{120}{r}$	(4)
	OR/OF	
	Area of/van 10 spheres/sfere = $10 \times 4 \times \pi \times r^2 = 40 \pi r^2$ Area of/van 10 cylinders/silinders = $10(2 \pi r^2 + 2 \pi r h)$ = $10(2 \pi r^2 + 2 \pi r \frac{6}{\pi r^2})$ = $20 \pi r^2 + \frac{120}{r}$	✓ area of 10 spheres/ area van 10 sfere ✓ area of 10 cylinders/ area van 10 silinders ✓ substitution/substitusie
	Total area/Totale area = $40 \pi r^2 + 20 \pi r^2 + \frac{120}{r}$ = $60 \pi r^2 + \frac{120}{r}$	✓ simplification/vereen- voudiging (4)
9.3	$S' = 120\pi r - 120r^{-2} = 0$	✓ 120πr −120r ⁻²
	$120\pi r - \frac{120}{r^2} = 0$	√ = 0
	$120\pi r^3 - 120 = 0$	
	$r^3 = \frac{120}{120\pi}$	$\checkmark r^3 = \frac{120}{120\pi}$
	$r = \frac{1}{1} = 0,68 \text{ cm}$	120/
	$\pi^{\frac{1}{3}}$	✓ answer/antwoord
		(4)
		[9]

Question 8 November 2015

8.1	$f(x+h) = (x+h)^2 - 3(x+h)$	✓ finding f(x+h)
	$= x^2 + 2xh + h^2 - 3x - 3h$	57.
	$f(x+h) - f(x) = x^2 + 2xh + h^2 - 3x - 3h - (x^2 - 3x)$	
	$=2xh+h^2-3h$	$\checkmark 2xh + h^2 - 3h$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	√formula
	$=\lim_{h\to 0}\frac{2xh+h^2-3h}{h}$	
	$=\lim_{h\to 0}\frac{h(2x+h-3)}{h}$	√ factorisation
	$=\lim_{k\to 0} (2x + h - 3)$	
	=2x-3	✓answer (5)
	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	√ formula
	$(x+h)^2 - 3(x+h) - (x^2 - 3x)$	
	$= \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) - (x^2 - 3x)}{h}$	✓ finding f(x+h)
	$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 3x - 3h - x^2 + 3x}{h}$	V Iniding J(x+n)
	$= \lim_{h \to 0} \frac{2xh + h^2 - 3h}{h}$	
	$= \lim_{h \to 0} \frac{h(2x+h-3)}{h}$	$\checkmark 2xh + h^2 - 3h$
	**	✓ factorisation
	$=\lim_{h\to 0}(2x+h-3)$	▼ lactorisation
	=2x-3	√answer
		(5)
8.2.1	$y = \left(x^2 - \frac{1}{x^2}\right)^2$	
	$y = x^4 - 2 + \frac{1}{x^4}$	$\sqrt{x^4-2+\frac{1}{x^4}}$
	$=x^4-2+x^{-4}$	
	$\frac{dy}{dx} = 4x^3 - 4x^{-5}$	$\checkmark 4x^3$ $\checkmark -4x^{-5}$
	OR/OF	(3)

	By using the chain rule (which is not part of CAPS): $y = (x^{2} - x^{-2})^{2}$ $\frac{dy}{dx} = 2(x^{2} - x^{-2})(2x + 2x^{-3})$ $= 2(2x^{3} + 2x^{-1} - 2x^{-1} - 2x^{-5})$ $= 2(2x^{3} - 2x^{-5})$ $= 4x^{3} - 4x^{-5}$	$2(x^{2}-x^{-2})(2x+2x^{-3})$ (3)
8.2.2	$D_x \left[\frac{(x-1)(x^2+x+1)}{x-1} \right]$ $= D_x \left[x^2 + x + 1 \right]$ $= 2x+1$ OR/OF	✓ factorisation ✓ $x^2 + x + 1$ ✓ $2x + 1$ (3)
	By using the quotient rule (with is not part of CAPS): $D_x \left[\frac{x^3 - 1}{x - 1} \right]$ $= \frac{3x^2(x - 1) - (x^3 - 1)}{(x - 1)^2}$	$\frac{3x^{2}(x-1)-(x^{3}-1)}{(x-1)^{2}}$ (3) [11]

Question 9 November 2015

9.1	Substitute Q(2; 10) into	
	$h(x) = -x^3 + ax^2 + bx$	✓ substitute Q into
	$-2^3 + a(2^2) + b(2) = 10$	h
	-8 + 4a + 2b = 10	
	2a + b = 9line 1	√finding
	$h'(x) = -3x^2 + 2ax + b$	derivative ✓ h'(2)
	At Q: $h'(2) = 0$	✓equating
	$-3(2)^2 + 2a(2) + b = 0$	derivative to 0
	-12 + 4a + b = 0	
	4a + b = 12line 2	
	line 2 – line 1: $2a = 3$	✓solving
	$a=\frac{3}{2}$	simultaneously
	$a = \frac{1}{2}$	for a and b
	Substitute in line 1: $b = 6$	(5)
		(5)

9.2	$f(-1) = -(-1)^3 + \frac{3}{2}(-1)^2 + 6(-1)$	$\checkmark f(-1) = -3.5$
	= -3 ,5	
	Average gradient/Gemiddelde gradiënt = $\frac{f(x_Q) - f(x_P)}{x_Q - x_P}$	√ formula
	Average gradient/ Gemiddelde gradiënt = $\frac{10 - (-3.5)}{2 - (-1)}$	✓substitution
	= 4,5	✓answer (4)

9.3	$h'(x) = -3x^2 + 3x + 6$	$\checkmark h'(x) = -3x^2 + 3x$	+6
	h''(x) = -6x + 3	$\checkmark h''(x) = -6x$	
	=-3(2x-1)		
	$ \begin{array}{c c} h''(x)>0 & h''(x)<0 \\ \hline \frac{1}{2} & \\ \end{array} $		
	For $x < \frac{1}{2}$, h is concave up and for $x > \frac{1}{2}$, h is concave down	✓explanation	
	Vir $x < \frac{1}{2}$, is h konkaaf na bo en vir $x > \frac{1}{2}$, is h konkaaf na onder	using h"(x)	(3)
	\therefore concavity changes at $x = \frac{1}{2}$		
	$\therefore konkwiteit verander by x = \frac{1}{2}$		
9.4	The graph of h has a point of inflection at $x = \frac{1}{2}$	√answer	(1)
	Die grafiek van h het 'n buigpunt by $x = \frac{1}{2}$.		(1)
	OR/OF		
	The graph of h changes from concave up to concave down at $x = \frac{1}{2}$ / Die grafiek van h verander by $x = \frac{1}{2}$ van konkaaf op	√answer	
	na konkaaf af		(1)

9.5	Gradient of g is − 12/Gradiënt van g is −12	
	Gradient of tangent is/Gradient van die raaklyn is:	
	$h'(x) = -3x^2 + 3x + 6$	$\checkmark h'(x) = -3x^2 + 3x + 6$ $\checkmark h'(x) = -12$
	h'(x) = -12	$\checkmark h'(x) = -12$
	$-3x^2 + 3x + 6 = -12$	
	$3x^2 - 3x + 18 = 0$	
	$x^2 - x + 6 = 0$	✓ factors
	(x-3)(x+2)=0	✓selection of
	x = -2 only	x-value
	x = - 2 omy	
		(4)
		[17]

Question 10 November 2015

10.1	$\frac{h}{r} = \tan 60^{\circ}$	$\sqrt{\frac{h}{r}} = \tan 60^{\circ}$
	$r = \frac{h}{\tan 60^{\circ}}$	
	$\therefore r = \frac{h}{\sqrt{3}}$	✓answer (2)
10.2	$V_{\text{cone}} = \frac{1}{3} \pi r^2 h$	✓ formula
	$= \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h$ $= \frac{1}{9}\pi h^3$	✓ substitution of the value of r in terms of h
	$\frac{dV}{dh} = \frac{1}{3}\pi h^2$	volume answer ✓ derivative
	$\left. \frac{dV}{dh} \right _{h=9} = \frac{1}{3}\pi (9)^2$ = 27 π or 84,82 cm ³ /cm	✓ answer (5)

Question 8 Feb March 2016

8.1	$f(x+h) = -(x+h)^2 + 4 = -(x^2 + 2xh + h^2) + 4$	
0.1		
	$= -x^2 - 2xh - h^2 + 4$	\checkmark finding $f(x+h)$
	$f(x+h) - f(x) = -2xh - h^2$	$\sqrt{-2xh-h^2}$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	√formula
	11 H	
	$= \lim_{h \to 0} \frac{-2xh - h^2}{h}$	
	"	
	$= \lim_{h \to 0} \frac{h(-2x - h)}{h}$	√ factorisation
	$= \lim_{h \to 0} (-2x - h)$	
	=-2x	√answer
	_ _	(5)
	OR/OF	
	f(x+h) = f(x)	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	√formula
	$= \lim_{h \to 0} \frac{-(x+h)^2 + 4 - (-x^2 + 4)}{h}$	
	$= \lim_{h \to 0} \frac{-x^2 - 2xh - h^2 + 4 + x^2 - 4}{h}$	✓ finding $f(x+h)$
	$= \lim_{h \to 0} \frac{-2xh - h^2}{h}$	$\checkmark -2xh - h^2$
	$h \to 0$ h	
	$= \lim_{h \to 0} \frac{h(-2x - h)}{h}$	√ factorisation
	$= \lim_{h \to 0} (-2x - h)$	
	= -2x	✓answer
	= -2.1	(5)
8.2.1	$y = 3x^2 + 10x$	_
	$\frac{dy}{dx} = 6x + 10$	✓ 6x ✓ 10
	dx	(2)
8.2.2	(3) ²	
	$f(x) = \left(x - \frac{3}{x}\right)^2$	_
	$=x^2-6+\frac{9}{x^2}$	$\sqrt{x^2-6+\frac{9}{v^2}}$
	$=x^{2}-6+\frac{1}{x^{2}}$	х .
	$= x^2 - 6 + 9x^{-2}$	✓ 9x ⁻²
	$f'(x) = 2x - 18x^{-3}$	$✓ x^2 - 6 + \frac{9}{x^2}$ $✓ 9x^{-2}$ $✓ 2x - 18x^{-3}$
		(3)
		1-7

8.3.2 $f(x) = 2x^3 - 23x^2 + 80x - 84$ $= (x - 2)(2x^2 - 19x + 42)$ $= (x - 2)(2x - 7)(x - 6)$ 8.3.3 $f'(x) = 6x^2 - 46x + 80$ $6x^2 - 46x + 80 = 0$ $3x^3 - 23x + 40 = 0$ (3x - 8)(x - 5) = 0 $x = \frac{8}{3}$ or $x = 5$ 8.3.4 $f'(x) = 6x^3 - 46x + 80$ $f'(x) = 6x^3 - 46x + 80 = 40$ $f'(x) = 6x^3 - 46x + 80$ $f'(x) = $	0.0.		
8.3.2 $f(x) = 2x^3 - 23x^2 + 80x - 84$ $= (x - 2)(2x^2 - 19x + 42)$ $= (x - 2)(2x - 7)(x - 6)$ (2) 8.3.3 $f'(x) = 6x^2 - 46x + 80$ $6x^2 - 46x + 80 = 0$ $3x^2 - 23x + 40 = 0$ $3x^3 - 23x + 40 = 0$ (3) 8.3.4 $f'(x) = 6x^3 - 46x + 80$ $f''(x) = 6x^3 - 46x + 80$	8.3.1	$f(2) = 2(2)^3 - 23(2)^2 + 80(2) - 84$	✓ substitution of 2
8.3.2 $f(x) = 2x^3 - 23x^2 + 80x - 84$ $= (x - 2)(2x^2 - 19x + 42)$ = (x - 2)(2x - 7)(x - 6) 8.3.3 $f'(x) = 6x^2 - 46x + 80$ $6x^2 - 46x + 80 = 0$ $3x^2 - 23x + 40 = 0$ (3x - 8)(x - 5) = 0 $x = \frac{8}{3}$ or $x = 5$ 8.3.4 $f'(x) = 6x^2 - 46x + 80 = 0$ $x = \frac{8}{3}$ or $x = 5$ $x = \frac{8}{3}$ or $x = 1$ $x = \frac{20}{3}$ or x		= 0	
8.3.2 $f(x) = 2x^3 - 23x^2 + 80x - 84$ $= (x - 2)(2x^2 - 19x + 42)$ = (x - 2)(2x - 7)(x - 6) 8.3.3 $f'(x) = 6x^2 - 46x + 80$ $6x^2 - 46x + 80 = 0$ $3x^2 - 23x + 40 = 0$ (3x - 8)(x - 5) = 0 $x = \frac{8}{3}$ or $x = 5$ 8.3.4 $f'(x) = 6x^2 - 46x + 80$ $x = \frac{8}{3}$ or $x = 5$ 8.3.5 $f'(x) = 6x^2 - 46x + 80 = 40$ f'(x) = 0 $f'(x) = 6x^2 - 46x + 80 = 40$ f'(x) = 0 $f'(x) = 6x^2 - 46x + 80 = 40$ f'(x) = 0 $f'(x) = 6x^2 - 46x + 80 = 40$ f'(x) = 0 f'(x) = 0		(x-2) is a factor	1
	8.3.2	$f(x) = 2x^3 - 23x^2 + 80x - 84$	
8.3.3 $f'(x) = 6x^2 - 46x + 80$ $f'(x) = 6x^2 - 46x + 80 = 40$ $f'(x) = 6x^2 - 46x + 80 = $		•	
8.3.3 $f'(x) = 6x^2 - 46x + 80$ $f'(x) = 6x^2 - 46x + 80$ $f'(x) = 6x^2 - 46x + 80$ $f'(x) = 6$ $f'(x$		1 /1	$\checkmark (x-2)(2x-7)(x-6)$
8.3.5 $6x^2 - 46x + 80 = 0$ $3x^2 - 23x + 40 = 0$ (3x - 8)(x - 5) = 0 $x = \frac{8}{3}$ or $x = 5$ 8.3.4 \sqrt{x} -intercepts \sqrt{x} -intercepts \sqrt{x} -intercept \sqrt{x} -intercep	0 2 2	7 77 77	(2)
8.3.4 $3x^2 - 23x + 40 = 0$ (3x - 8)(x - 5) = 0 $x = \frac{8}{3}$ or $x = 5$ x -values (4) 8.3.4 x -values (4) 8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ 3x - 20(x - 1) = 0 $3x = \frac{20}{3}$ or $x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches $f(x)$ moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ y = mx + c -25 = 40(1) + c	8.3.3		
8.3.4 $\sqrt{3x-8}(x-5) = 0$ $\sqrt{3x-8}(x-5) = 0$ $\sqrt{3x-8}(x-5) = 0$ $\sqrt{3x-2}$ $\sqrt{3x-3}$ \sqrt			y (x)=0
8.3.4 8.3.4 $x = \frac{8}{3}$ or $x = 5$ x -values (4) x -intercepts x -intercepts x -intercepty x -shape (5) x -intercepts x -intercepty x -intercepty x -shape (6) x -46 x +80 = 40 x -46 x -46 x +80 = 40 x -46 x -46 x -40 = 0 x -46 x -40 = 40 x -46 x -40 = 40 x -46 x -40 = 40 x -40			
8.3.4 8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $x = \frac{20}{3}$ or $x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches $f(x)$ moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ (3) $\sqrt{6x^2 - 46x + 80} = 40$			√ factors
8.3.4 8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $x = \frac{20}{3}$ or $x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches $f(x)$ moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ (3) $\sqrt{6x^2 - 46x + 80} = 40$		$x = \frac{8}{5}$ or $x = 5$	√y-values
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ (3x - 20)(x - 1) = 0 $x = \frac{20}{3}$ or $x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches f/x moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ y = mx + c -25 = 40(1) + c		3	
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $\sqrt{factors}$ $\sqrt{x} = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches f/x moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$	8.3.4	_	
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $\sqrt{factors}$ $\sqrt{x} = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches f/x moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$		6/ 3	
8.3.5 $6x^2 - 46x + 80 = 40$		2 3,5	✓x-intercepts
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $\sqrt{10}$ factors $\sqrt{10}$			-
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $6x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $\sqrt{6x^2 - 23x + 20} = 0$ $\sqrt{6x^2 - 246x + 80} = 40$ $\sqrt{6x^2 - 246x + 80} $		1	√shape
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $6x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $\sqrt{6x^2 - 23x + 20} = 0$ $\sqrt{6x^2 - 246x + 80} = 40$ $\sqrt{6x^2 - 246x + 80} $			
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $\sqrt{6x^2 - 46x + 80} = 40$ \sqrt		/	
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $\sqrt{6x^2 - 46x + 80} = 40$ \sqrt		/	
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $\sqrt{6x^2 - 46x + 80} = 40$ \sqrt		l√	
8.3.5 $6x^2 - 46x + 80 = 40$ $6x^2 - 46x + 40 = 0$ $3x^2 - 23x + 20 = 0$ (3x - 20)(x - 1) = 0 $x = \frac{20}{3}$ or $x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches f/x moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ y = mx + c -25 = 40(1) + c		-84 j	(2)
$6x^{2} - 46x + 40 = 0$ $3x^{2} - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $x = \frac{20}{3} \text{ or } x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches f/x moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^{3} - 23(1)^{2} + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ $\sqrt{2} = 40(1) + c$	835	6.2 4600 40	
$3x^{2} - 23x + 20 = 0$ $(3x - 20)(x - 1) = 0$ $x = \frac{20}{3} \text{ or } x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches f/x moet heelgetal wees so $x = 1$ by punt waar die raaklyn fraak: $y = f(1) = 2(1)^{3} - 23(1)^{2} + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ $\sqrt{16} \cot x$ $\sqrt{x} = 1$ $\sqrt{x} = 1$ $\sqrt{y} = 1$ \sqrt{y}	0.5.5		▼ 0x =40x+50 = 40
$(3x-20)(x-1) = 0$ $x = \frac{20}{3} \text{ or } x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches f/x moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ \checkmark factors $\checkmark x = 1$ $\checkmark y = 1$ $\lor y = 1$			
$x = \frac{20}{3} \text{ or } x = 1$ But x must be an integer, so $x = 1$ at the point where tangent touches f/x moet heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ $\sqrt{2} = 40(1) + c$			/factors
But x must be an integer, so $x = 1$ at the point where tangent touches f/x most heelgetal wees so $x = 1$ by punt waar die raaklyn f raak: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ \checkmark answer			▼ Iactors
touches f/x moet heelgetal wees so $x = 1$ by punt waar die $raaklyn f raak$: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ $\checkmark y$ -value $\checkmark y$ -value $\checkmark - 25 = 40(1) + c$ $\checkmark answer$		$x = \frac{20}{3}$ or $x = 1$	✓x =1
touches f/x moet heelgetal wees so $x = 1$ by punt waar die $raaklyn f raak$: $y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ $\checkmark y$ -value $\checkmark y$ -value $\checkmark - 25 = 40(1) + c$ $\checkmark answer$		But x must be an integer, so $x = 1$ at the point where tangent	
$y = f(1) = 2(1)^{3} - 23(1)^{2} + 80(1) - 84 = -25$ $y = mx + c$ $-25 = 40(1) + c$ $\checkmark -25 = 40(1) + c$ $\checkmark \text{answer}$		touches f/x moet heelgetal wees so $x = 1$ by punt waar die	
y = mx + c -25 = 40(1) + c $\sqrt{-25} = 40(1) + c$ $\sqrt{-25} = 40(1) + c$		raaкīyn f raak:	✓ y-value
y = mx + c -25 = 40(1) + c $\sqrt{-25} = 40(1) + c$		$y = f(1) = 2(1)^3 - 23(1)^2 + 80(1) - 84 = -25$	
-25 = 40(1) + c			$\sqrt{-25} = 40(1) + c$
			√answer
(6)		-65 = c	(6)
(0; -65)		(0;-65)	[27]

Question 9 Feb March 2016

9.1	$340 = \pi r^2 h$	✓ substitution into
	. 340	volume formula
	$\therefore h = \frac{340}{\pi r^2}$	✓answer
		(2)
9.2	$A = 2\pi r^2 + 2\pi rh$	√formula
	$= 2\pi r^2 + 2\pi r \left(\frac{340}{\pi r^2}\right)$	✓ substitution of h
	$=2\pi r^2 + 680r^{-1}$	(2)
9.3	$A(r) = 2\pi r^{2} + 680r^{-1}$ $A'(r) = 4\pi r - 680r^{-2}$ $4\pi r - 680r^{-2} = 0$	
	$\Delta'(r) = 4\pi r - 680r^{-2}$	$\sqrt{4\pi r}$ $\sqrt{-680r^{-2}}$
	11 (1) = 1117 0007	$\sqrt{-680}r^{-2}$
	$4\pi r - 680r^{-2} = 0$	
	$4\pi r = \frac{680}{r^2}$	
	$r^2 = \frac{1}{r^2}$	600
	3 680	$\checkmark r^3 = \frac{680}{4\pi}$
	$r^3 = \frac{680}{4\pi}$	4π
	680	✓answer
	$r = \sqrt[3]{\frac{680}{4\pi}}$ cm or 3,78 cm	v answer (4)
	γ 4π	[8]
		[0]

Question 7 May June 2016

7.1	$f(x+h) = 3(x+h)^2 - 5 = 3(x^2 + 2xh + h^2) - 5$ $= 3x^2 + 6xh + 3h^2 - 5$	$\checkmark 3x^2 + 6xh + 3h^2 - 5$
	$f(x+h) - f(x) = 3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5$ $= 6xh + 3h^2$	$\checkmark 6xh + 3h^2$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark \frac{f(x+h)-f(x)}{h}$
	$= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$	✓ common factor/ $(6x + 3h)$
	$= \lim_{k \to 0} \frac{1}{h}$ $= \lim_{k \to 0} (6x + 3h)$	✓ answer
	= 6x OR/OF	(5)

	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark \frac{f(x+h) - f(x)}{h}$
	$= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$	$\checkmark 3x^2 + 6xh + 3h^2 - 5$
	$=\lim_{h\to 0}\frac{6xh+3h^2}{h}$	$\checkmark 6xh + 3h^2$
	$= \lim_{h \to 0} \frac{h(6x+3h)}{h}$ $= \lim_{h \to 0} (6x+3h)$	\checkmark common factor/ $(6x + 3h)$
	$= \lim_{h \to 0} (6x + 3h)$ $= 6x$	✓ answer
	- 53	(5)
7.2.1	$v = 2x^5 + \frac{4}{x^2}$	
	$y = 2x^{5} + \frac{4}{x^{3}}$ $y = 2x^{5} + 4x^{-3}$	$\checkmark 2x^5 + 4x^{-3}$
	$y = 2x^3 + 4x^{-3}$	$\checkmark 2x^5 + 4x^{-3}$ $\checkmark 10x^4$ $\checkmark -12x^{-4}$
	$\frac{dy}{dx} = 10x^4 - 12x^{-4}$	10x
	dx	✓ -12x ⁻⁴
		(3)

7.2.2	$y = \left(\sqrt{x} - x^2\right)^2$	
	$y = \left(x^{\frac{1}{2}} - x^2\right)^2$	
		5
	$=x-2x^{\frac{5}{2}}+x^4$	$\checkmark x - 2x^{\frac{5}{2}} + x^4$
	$\frac{dy}{dx} = 1 - 5x^{\frac{3}{2}} + 4x^3$	√ 1
	$\frac{1}{dx}$	$\sqrt{-5x^{\frac{3}{2}}}$ $\sqrt{4x^3}$
		√ 4x³
		(4)
		[12]

Question 8 May June 2016

8.1 $y = 12$	✓answer (1)
--------------	-------------

8.2	$12 = (0-2)^2(0-k)$	✓ substituting (0;12)
	k = -3	✓ k = -3
	$(x-2)^2(x+3)=0$	
	x = -3	
	OR/OF	$\checkmark x = -3 \tag{3}$
	y = 0	(5)
	$(x-2)^2(x-k)=0$	
	$(x^2 - 4x + 4)(x - k) = 0$	
	$x^{5} - kx^{2} - 4x^{2} + 4kx + 4x - 4k = 0$	√-4 <i>k</i>
	But $-4k$ is the y-intercept	
	Maar – 4k is die y-afsnit	$\checkmark -4k = 12 \text{ or } k = -3$
	-4k = 12	- 4k - 12 OI k3
	k = -3	✓ x = -3
	x = -3	(3)
8.3	$f(x) = x^3 + 3x^2 - 4x^2 - 12x + 4x + 12$	
	$f(x) = x^3 - x^2 - 8x + 12$	$f(x) = x^3 - x^2 - 8x + 12$
	$f'(x) = 3x^2 - 2x - 8$	
	$3x^2 - 2x - 8 = 0$	✓ derivative
	(3x+4)(x-2) = 0	✓derivative equal to 0
		✓factors or formula
	$x = -\frac{4}{3}$ or $x = 2$	$\checkmark x = -\frac{4}{3}$
	500	$v x = -\frac{1}{3}$
	$y = \frac{500}{27}$ or 18,52 or $18\frac{14}{27}$	
		$\checkmark y = \frac{500}{27}$
	$C\left(-\frac{4}{3};18,52\right)$	27
		or 18,52 or 18 14 27
		27
		(6)
8.4	f''(x) = 6x - 2	$\checkmark 6x-2$
0.4	6x - 2 < 0	- 0A - 2
	$x < \frac{1}{3}$	
	1	
	f is concave down when $x < \frac{1}{3}$	1
I		V V Y < -

f is konkaaf na onder vir $x < \frac{1}{3}$

Differential Calculus Memo

f''(x) = 6x - 2	✓ 6x-2	
6x - 2 = 0		
$x = \frac{1}{3}$		
f is concave down when $x < \frac{1}{3}$	$\checkmark\checkmark x < \frac{1}{3}$	
f is konkaaf na onder vir $x < \frac{1}{3}$	$\frac{3}{3}$	(3)
OR/OF		
$x = \frac{x_c + x_d}{2}$	$\sqrt{\frac{-\frac{4}{3}+2}{2}}$ or $-\frac{-1}{3(1)}$	
$x = \frac{b}{2}$ $-\frac{4}{3a}$	$\frac{1}{2}$ or $-\frac{1}{3(1)}$	
$= \frac{-\frac{4}{3} + 2}{2} \qquad \text{or/of} \qquad = -\frac{-1}{3(1)}$		
$=\frac{1}{3} \qquad \qquad =\frac{1}{3}$		
f is concave down when $x < \frac{1}{3}$	$\checkmark\checkmark x < \frac{1}{3}$	
f is konkaaf na onder vir $x < \frac{1}{3}$		(3)
3		[13]

Question 9

May June 2016

9.1	$V = \pi r^2 h$	√formula
	$\pi r^2 h = 340$	✓equating to 340
	$h = \frac{340}{\pi r^2}$	$\checkmark h = \frac{340}{\pi r^2}$
	πr^2	$r = \frac{\pi r^2}{\pi r^2}$
		(3)
9.2	$A = 2\pi r^2 + 2\pi rh$	$\checkmark 2\pi r^2 + 2\pi rh$
	$=2\pi r^2 + 2\pi r \left(\frac{340}{\pi r^2}\right)$	
	(πr^2)	✓ substituting h
	$=2\pi r^2 + \frac{680}{}$	
	r	
	$A'(r) = 4\pi r - \frac{680}{r^2}$	$\checkmark 4\pi r - \frac{680}{r^2}$ $\checkmark A'(r) = 0$
	A'(r) = 0 for minimum surface area/	\checkmark A'(r)=0
	vir min imum buite-oppervlakte	
	$4\pi r - \frac{680}{r^2} = 0$	600
	1	$\checkmark r^3 = \frac{680}{4\pi}$
	$r^3 = \frac{680}{4\pi} = \frac{170}{\pi}$	4π
	***	✓answer
	= 54,11268	(6)
	r = 3.78 cm	[9]

Question 8 November 2016

8.1	$f(x+h) = 3(x+h)^2$	$\checkmark 3(x+h)^2$
	$=3(x^2+2xh+h^2)$	
	$=3x^2+6xh+3h^2$	
	$f(x+h) - f(x) = 3x^2 + 6xh + 3h^2 - 3x^2$	
	$=6xh+3h^2$	$\checkmark 6xh + 3h^2$
	f(x+h) = f(x)	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
	$=\lim_{h\to 0}\frac{6xh+3h^2}{h}$	h→0 h
	$=\lim_{h\to 0} {h}$	
	$=\lim_{h\to 0}\frac{h(6x+3h)}{h}$	$\checkmark \lim_{h\to 0} (6x+3h)$
	·	
	$=\lim_{h\to 0}(6x+3h)$	
	=6x	√ 6x
		(5)
	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	\checkmark $f(x+h)-f(x)$
	n n	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\checkmark 3(x+h)^2 - 3x^2$
	$= \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h}$	(2(n+1) ² 2n ²
	<i>"</i>	\checkmark $3(x+n) -3x$
	$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 3x^2}{h}$	
	$6xh + 3h^2$	$\checkmark 6xh + 3h^2$
	$=\lim_{h\to 0}\frac{6xh+3h^2}{h}$	
	$=\lim_{h\to 0}\frac{h(6x+3h)}{h}$	$\checkmark \lim_{h\to 0} (6x+3h)$
	**	$h \to 0$
	$=\lim_{h\to 0}(6x+3h)$	✓ 6x
	=6x	(5)

8.2	$\lim_{h \to 0} \frac{\sqrt{4+h} - 2}{h}$ $g(x) = \sqrt{x}$ $a = 4$	✓ answer ✓ answer (2)
8.3	$y = \sqrt{x^3 - \frac{5}{x^3}}$ $y = x^{\frac{3}{2}} - 5x^{-3}$ $\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} + 15x^{-4}$	√ x3/2 √ -5x-3 √ 3/2 x1/2 √ 15x-4 (4)

8.4	$f(x) = x^{3} + ax^{2} + bx + 18$ $f'(x) = 3x^{2} + 2ax + b$	$\checkmark 3x^2 + 2ax + b$
	At $x = 1$, $m_{tan} = -8$	
	$f'(1) = -8$ $3(1)^{2} + 2a(1) + b = -8$ $3 + 2a + b = -8$	$f'(1) = -8$ or $3(1)^2 + 2a(1) + b = -8$
	2a + b = -11(1)	
	y = f(1) $= g(1)$	
	= -8(1) + 20 $= 12$ $1 + a + b + 18 = 12$	$\checkmark 1+a+b+18=12$
	a + b = -7(2)	√ a = -4
	a = -4 $b = -3$	$ \sqrt[4]{a} = -4 $ $ \sqrt[4]{b} = -3 $ (5)
		[16]

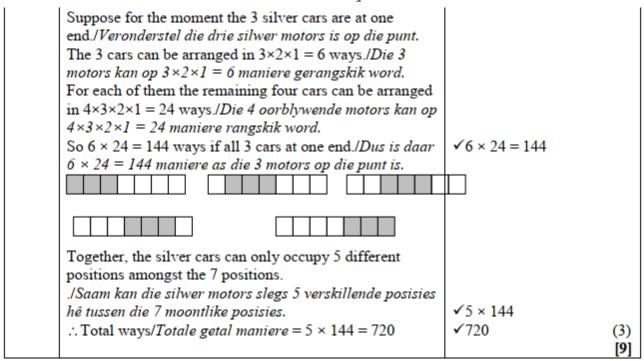
Question 9 November 2016

9.1	$f'(x) = 3x^2 + 8x - 3 = 0$	✓ equating derivative to
	(3x-1)(x+3)=0	zero
		✓ factors
	$x = \frac{1}{3} or x = -3$	✓ x - values
		(3)
9.2	f''(x) = 6x + 8	\checkmark 6x+8
	6x + 8 < 0	4
	4	$\checkmark\checkmark x < -\frac{4}{3}$
	$x < -\frac{4}{3}$	_
	OR	(3)
	1 ,	1
	$\frac{-3}{3}$	$\frac{1}{2}$ - 3
	$x = \frac{\frac{1}{3} - 3}{2}$	$\sqrt{\frac{\frac{1}{3}-3}{2}}$
		2
	$=\frac{4}{3}$	
	$\therefore x < -\frac{4}{3}$	4
	3	$\checkmark\checkmark x < -\frac{4}{3}$
		(3)
9.3	$x \le -3$ or $x \ge \frac{1}{3}$	✓ x ≤ -3
	3	$\checkmark x \ge \frac{1}{2}$ (2)
	OR/OF	$\frac{1}{3}$
	r. 7	√ [-∞;-3]
	$\left[-\infty;-3\right] \cup \left[\frac{1}{3};\infty\right]$	[1]
	[3,3]	$\checkmark x \ge \frac{1}{3} $ $\checkmark [-\infty; -3]$ $\checkmark \left[\frac{1}{3}; \infty\right] $ (2)

	i
9.4 $f(0) = -18$	
d = -18	
$f(x) = ax^3 + bx^2 + cx - 18$	✓ d = -18
	$\checkmark f'(x) = 3ax^2 + 2bx + c$
$f'(x) = 3ax^2 + 2bx + c$	
$f'(x) = 3x^2 + 8x - 3$	
3a = 3 $2b = 8$	✓ a = 1
$a = 1 \qquad b = 4 \qquad c = -3$	✓ b = 4
	✓ c = -3
$f(x) = x^3 + 4x^2 - 3x - 18$	(5)
OR/OF	
$f'(x) = 3x^2 + 8x - 3$	
By integration/Deur integrasie	$\checkmark f(x) = x^3 + 4x^2 - 3x + d$
$f(x) = x^3 + 4x^2 - 3x + d$	
	✓ d = -18
f(0) = d = -18	✓ a = 1
a=1	✓ b = 4
b=4	✓ c = -3
c = -3	(5)
	[13]
	,

Question 10 November 2016

10.1	$M(t) = -t^3 + 3t^2 + 72t$	((-) (-)3 -(-)2(-)
	$M(3) = -(3)^3 + 3(3)^2 + 72(3)$	\checkmark M(3)=-(3) ³ + 3(3) ² + 72(3)
	= 216	✓ 216
	216 molecules/molekules	(2)
10.2	$M(t) = -t^{3} + 3t^{2} + 72t$ $M'(t) = -3t^{2} + 6t + 72$	$\checkmark M'(t) = -3t^2 + 6t + 72$
	$M'(2) = -3(2)^2 + 6(2) + 72$ = 72	✓ M'(2) ✓ 72
	72 molecules per hour/molekules per uur	(3)
10.3	$M(t) = -t^{3} + 3t^{2} + 72t$ $M'(t) = -3t^{2} + 6t + 72$ $M''(t) = 0$	$\checkmark M''(t)$ $\checkmark M''(t) = 0$
	-6t+6=0 $t=1$ Maximum rate of change of the number of molecules of the	✓ answer
	drug in the bloodstream is after 1 hour./Maksimum tempo van verandering van die getal molekules in die bloedstroom is na 1 uur	(3) [8]

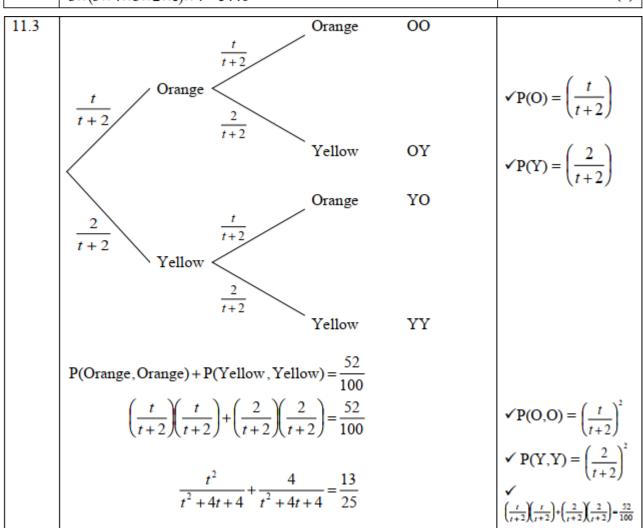

Question 11 November 2014

11.1.1 P(male/manlik) = $\frac{83}{180}$ or 0,46 or 46,11%	✓answer/antwoord (1)
11.1.2 P(not game park/nie wildreservaat) = 1 - P(game park/wildreservaat) = 1 - \frac{62}{180} = \frac{59}{90} \text{ or } 0,66 \text{ or } 65,56% OR/OF	√1-\frac{62}{180} √answer/antwoord (2)
P(not game park/nie wildreservaat) $= \frac{98}{180} + \frac{20}{180}$ $= \frac{118}{180}$ $= \frac{59}{90} \text{ or } 0,66 \text{ or } 65,56\%$	$\sqrt{\frac{98}{180}} + \frac{20}{180}$ ✓ answer/antwoord (2)
11.2 Events are independent if /Gebeure is onafhanklike indien P(male) × P(home) = P(male and home) P(manlik) × P(huis) = P(manlik en huis) P(male/manlik) = \frac{83}{180}	✓P(m) × P(h) and their values/en hulle waardes ✓answer of product
and/en P(home/huis) = $\frac{20}{180}$ or 0,11 or 11,11%	-
$P(\text{male/manlik}) \times P(\text{home/huis})$ =\frac{83}{180} \times \frac{20}{180} =\frac{83}{1620} = 0,05123 \text{ or 5,12%}	
P(male and home/manlik en huis) = $\frac{13}{180}$ = 0,07222 or 7,22%	✓P(m and/en h) value/waarde
Therefore P(male) × P(home) ≠ P(male and home) Dus P(manlik) × P(huis) ≠ P(manlik en huis) Thus the events are not independent./Dus is die gebeure nie onafhanklik nie	✓conclusion/afleiding (4)
OR/OF	

			- 1	
	Home/Huis	Not Home/ Nie huis]	
M	13	70	83	
F	7	90	97	
	20	160	180	
	ulik) × P(not	home/nie <i>huis</i>)		(P/A :: P/ (I)
$= \frac{97}{180} \times \frac{160}{180}$ $= \frac{194}{180}$		√P(f) × P(not h) and their values/en hulle waardes		
405 = 0,4790123	45 or 47,	✓answer of product		
$P(\text{female and} = \frac{90}{180}$ $= 0.5 \text{or} 5$	l not home/ <i>vr</i> 50%	✓P(f and/en not h) value/waarde		
Therefore P(nome)	female) × P(n			
Thus the events are not independent. Dus P(vroulik) × P(nie-huis) ≠ P(vroulik en nie-huis)				✓conclusion/afleiding (4)
	beure nie ond		-	[7]

Question 12 November 2014

12.1.1	26×25×24×23×22	✓ 26×25×24×23×22	(2)
	= 7 893 600	√7 893 600	(2)
	OR/OF		
	$^{26}P_{\rm s} = \frac{26!}{(26-5)!} = \frac{26!}{21!} = 7893600$	✓ formula/formule ✓ answer/antwoord	(2)
12.1.2		✓ 24×23×22	
	= 12 144	✓12 144	(2)
12.2.1	7×6×5×4×3×2×1	✓product/produk	(-)
	= 5 040	√5 040 Î	(2)
12.2.2		√3×2×1	
	= 720	√5×4×3×2×1 √720	
	OR/OF	720	(3)
	The five 'units' can be parked in 5×4×3×2×1 ways./Die vyf 'eenhede' kan op 5×4×3×2×1 maniere geparkeer word.	√5×4×3×2×1	
	The three silver cars can be parked in 3×2×1 ways./Die drie silver motors kan op 3×2×1 maniere parkeer word.	√3×2×1	
	So there are $(3\times2\times1)(5\times4\times3\times2\times1) = 720$ ways to park the cars /Dus is daar $(3\times2\times1)(5\times4\times3\times2\times1) = 720$ maniere om die motors te parkeer.	√ 720	(3)
	OR/OF		



Question 10 Feb March 2015

10.1.1	d = 5	$\checkmark d = 5$	
	e = 4	$\checkmark e = 4$ $\checkmark f = 7$	
	f=7	√f=7	
	g = 5	$\sqrt{g} = 5$	
			(4)
10.1.2a	P(A and/en B and/en C) = $\frac{4}{54} = \frac{2}{27}$	$\sqrt{\frac{4}{54}} = \frac{2}{27}$	
			(1)
10.1.2b	$P(A \text{ or/}of B \text{ or/}of C) = \frac{48}{54} = \frac{8}{9}$	$\checkmark \frac{48}{54} = \frac{8}{9}$	
			(1)
10.1.2c	$P(\text{only/slegs C}) = \frac{7}{54}$	√ 7 54	
			(1)
10.1.2d	P(that a country uses exactly two methods/dat 'n land	. 17	
	presies twee metodes gebruik) = $\frac{5+4+8}{54} = \frac{17}{54}$	$\checkmark \frac{17}{54}$	(1)
10.2.1	P(selects Midnight as drama/kies Midnight as drama) = $\frac{1}{5}$	✓✓ answer/antwoord	
10.2.2	Number of different selections of drama, romance and	✓ product/produk	
	comedy/Aantal verskillende keuses van drama, liefdesverhale en komedie = $5 \times 4 \times 3 = 60$	✓ answer/antwoord	(2)
10.2.3	P(select Last Hero and Laughing Dragon/kies Last Hero en Laughing Dragon) = $\frac{1}{5} \times \frac{1}{3} = \frac{1}{15}$ OR/OF	✓ product/produk ✓ answer/antwoord	(2)
	P(select Last Hero and Laughing Dragon/kies Last Hero en Laughing Dragon) = $\frac{1 \times 4 \times 1}{60} = \frac{1}{15}$	✓ product/ <i>produk</i> ✓ answer/ <i>antwoord</i>	(2) [14]

Question 11 November 2015

$P(A) \times P(B)$	√0,2×0,63
$=0.2\times0.63$	
= 0,126	\checkmark P(A)×P(B)=P(A
i.e. $P(A) \times P(B) = P(A \text{ and } B)$	and B)
	✓conclusion
-	(3)
$7^7 = 823\ 543$	√√ 7 ⁷
	(2)
7!=5040	√ √7!
	(2)
There are 3 vowels \Rightarrow 3 options for first position	√×3
There are 4 consonants \Rightarrow 4 options for last position	✓×4
The remaining 5 letters can be arranged in $5 \times 4 \times 3 \times 2 \times 1$ ways	✓ 5×4×3×2×1
$3 \times (5 \times 4 \times 3 \times 2 \times 1) \times 4 = 1440$	✓answer
Daar is 3 klinkers \Rightarrow 3 opsies vir die eerste posisie	
5×4×3×2×1 ways/maniere	
$3\times(5\times4\times3\times2\times1)\times4=1440$	(4)
	= 0,2×0,63 = 0,126 i.e. P(A) × P(B) = P(A and B) Therefore A and B are independent/Dus is A en B onafhanklik 7 ⁷ = 823 543 7!=5040 There are 3 vowels ⇒ 3 options for first position There are 4 consonants ⇒ 4 options for last position The remaining 5 letters can be arranged in 5×4×3×2×1 ways 3×(5×4×3×2×1)×4 = 1440 Daar is 3 klinkers ⇒ 3 opsies vir die eerste posisie Daar is 4 konsonante ⇒ 4 opsies vir die laaste posisie Die oorblywende 5 letters kan as volg gerangskik word 5×4×3×2×1 ways/maniere

$25(t^2+4)=13(t^2+4t+4)$		
$3t^2 - 13t + 12 = 0$		
(3t-4)(t-3)=0		
t = 3	$\checkmark t = 3 \text{ (no ca)}$	
There are 3 orange balls in the bag/Daar is 3 oranje balle in die		
sak		(6)
		[17]

Question 10 Feb March 2016

10.1.1	160	✓answer
		(1)
10.1.2	$P(M) = \frac{60}{160}$	√ 60
	$=\frac{3}{}$	
	8 = 0,375	✓answer (2)
10.1.3	$P(Male) \times P(Coffee) = P(Male and Coffee)$	√formula
	$P(Manlik) \times P(Koffie) = P(Manlik en Koffie)$ $\frac{3}{8} \times \frac{80}{160} = \frac{b}{160}$ $\frac{3}{16} = \frac{b}{160}$ $16b = 480$	$\checkmark \frac{80}{160}$ $\checkmark \frac{b}{160}$
	b = 30	✓ answer (4)

10.2.1	6!	√ 6!	
	$= 6 \times 5 \times 4 \times 3 \times 2 \times 1$		
	= 720	✓answer	
			(2)
10.2.2	number of ways Xoliswa sits next to Anees/		
	getal maniere waarop Xoliswa langs Anees sit		
	$=5!\times2$	✓ 5!×2	
	= 240	✓answer	(2)
			(2)
	OR/OF		

Probability Memo

	Regard Xoliswa and Anees as a single entity/Beskou Xoliswa en Anees as een Number of ways in which 5 passengers can be arranged = 5!	✓ 5!+5!
	Getal maniere waarop 5 passasiers gerangskik kan word = 5! So 5! different arrangements for XA and 5! different arrangements for AX	✓answer
	So 5! verskillende rangskikkings vir XA en 5! verskillende rangskikkings vir AX	
	number of ways Xoliswa sits next to Anees	(2)
	getal maniere waarop Xoliswa langs Anees sit	
	$=5!\times 2$	
	= 240	
10.2.3	number of ways Mary is at an end of the row on the left = 1×5 !	/1 /1 T.TIC
	number of ways Mary is at an end of the row on the right = $5! \times 1$	✓both LHS and RHS ways
	total number of arrangements = 6!	√6!
	$P(\text{Mary is at an end of the row}) = \frac{5! \times 1 + 1 \times 5!}{6!}$	✓ setting up probability
	$=\frac{1}{3}$	✓answer
	getal maniere waarop Mary aan die einde van die ry links is = 1×5 !	(4)
	getal maniere waarop Mary aan die einde van die ry regs is = $5! \times 1$	
	totale getal rangskikkings = 6!	
	$P(\text{Mary is aan einde van die ry}) = \frac{5! \times 1 + 1 \times 5!}{6!}$	
	$=\frac{1}{3}$	[15]

Question 10 May June 2016

10.1.1 (a)	$P(\text{Female/Vroulik}) = \frac{70}{150} = \frac{7}{15} = 0.47$	✓ 70 ✓ answer	(2)
10.1.1 (b)	P(Female playing tennis/Vroulik speel tennis) = $\frac{20}{150} = \frac{2}{15} = 0.13$	✓ answer	(1)

10.1.2

$$P(Female/Vroulik) = \frac{70}{150}$$

$$P(Playing/Speel tennis) = \frac{70}{150}$$

P(Female playing tennis/Vrouliks speel tennis) =
$$\frac{20}{150}$$
 = 0,13

P(Female/Vroulik) × P(Playing/Speel tennis) =
$$\left(\frac{70}{150}\right)\left(\frac{70}{150}\right) = \frac{4900}{22500} = 0.22$$

$$\left(\frac{70}{150}\right)\left(\frac{70}{150}\right) = \frac{4900}{22500} = 0.22$$
P(Female playing tennis/Vroulik speel tennis)

P(Female playing tennis/Vroulik speel tennis)

≠ P(Female/Vroulik) × P(Playing/Speel tennis)

Therefore the event of playing tennis is not independent of gender./

Dus is die gebeurtenis om tennis te speel nie onafhanklik van geslag nie

✓ P(Play ten) =
$$\frac{70}{150}$$

$$\left(\frac{70}{150}\right)\left(\frac{70}{150}\right) = \frac{4900}{22500}$$
$$= 0,22$$

Not independent

(3)

OR/OF

$$P(Male/Manlik) = \frac{80}{150}$$

$$P(Playing/Speel tennis) = \frac{70}{150}$$

P(Male playing tennis/Manlik speel tennis) =
$$\frac{50}{150}$$
 = 0,33333

$$P(Male/Manlik) \times P(Playing/Speel tennis) = \left(\frac{80}{150}\right)\left(\frac{70}{150}\right) = \frac{5600}{22500} = 0.25$$

P(Male playing tennis/Manlik speel tennis)

≠ P(Male/Manlik) × P(Playing/Speel tennis)

Therefore the event of playing tennis is not independent of gender./

Dus is die gebeurtenis om tennis te speel nie onafhanklik van geslag nie.

✓ P(Play ten) =
$$\frac{70}{150}$$

$$\left(\frac{80}{150}\right)\left(\frac{70}{150}\right) = \frac{5600}{22500}$$
$$= 0,25$$

Not independent

(3)

OR/OF

$$P(Male) = \frac{80}{150}$$

$$P(\text{Not playing tennis}) = \frac{80}{150}$$

P(Male not playing tennis) =
$$\frac{80}{150}$$
 = 0,53333

$$P(Male) \times P(Not playing tennis) = \left(\frac{80}{150}\right) \left(\frac{80}{150}\right) = \frac{6400}{22500} = 0.28$$

 $P(Male not playing tennis) \neq P(Male) \times P(Not playing tennis)$

Therefore the event of playing tennis in not independent of gender.

OR/OF

$$\checkmark$$
 P(not play ten) = $\frac{80}{150}$

$$\left(\frac{80}{150}\right)\left(\frac{80}{150}\right) = \frac{6400}{22500}$$

$$= 0.28$$

$$\checkmark P(M \text{ not play } t) \neq$$

$$P(M) \times P(\text{Not play } t)$$

(3)

Probability Memo

Plobability Memo	
$P(Female) = \frac{70}{150}$ $P(Not playing tennis) = \frac{80}{150}$	$V_{\text{P(not play ten)}} = \frac{80}{150}$
P(Female not playing tennis) = $\frac{50}{150}$ = 0,3333 P(Female) × P(Not playing tennis) = $\left(\frac{70}{150}\right)\left(\frac{80}{150}\right) = \frac{5600}{22500} = 0,25$	$\left(\frac{70}{150}\right)\left(\frac{80}{150}\right) = \frac{5600}{22500}$ = 0,25 $P(F \text{ not play t}) \neq$
P(Female not playing tennis) ≠ P(Female) × P(Not playing tennis)	P(F) × P(Not play t)
Therefore the events of playing tennis and gender are not independent.	Not independent (3)
10.2 $P(B) = 1 - P(B')$	
=1-0.28	
= 0,72	✓ $P(B) = 0.72$
P(A or B) = P(A) + P(B) - P(A and B)	
0.96 = 0.24 + 0.72 - P(A and B)	\checkmark P(A) = 0,24
0.96 = 0.96 - P(A and B)	✓ substitution into correct formula
P(A and B) = 0	\checkmark P(A and B) = 0
Events A and B are mutually exclusive Gebeurtenis A en B is onderling uitsluitend	(4)
	[10]

Question 11 May June 2016

11.1	$2 \times 2! \times 7! = 20160$	✓ 2 x 2!
		√ 7!
		✓ 20 160 (3)
11.2	All seated in 9! = 362 880 ways	✓ 9! or 362 880
	Girls seated together in 4! ways.	
	With the girls as one unit they can all be seated in	
	4! 6! ways = 17280	✓ 4! 6! or 17280
	P(all girls seated together/al die meisies sit saam) = $\frac{4! \ 6!}{9!}$	
	$=\frac{17280}{362880}$	✓ 17280 362880 or
	$=\frac{1}{21}$	$\frac{1}{21}$ or 0,047619
	= 0,047619 = 4,76%	or 4,76%
		(3)
		[6]

Question 11 November 2016

11.1					Ι	
		Watches TV during exams	Do not watch TV during exams	Total		
	Male	80	а	80+a		
	Female	48	12	60		
	Tota1	b	32	160		
	a+12=32					
	a = 20				✓a = 20	
	b = 80 + 48				✓b = 128	
	=128				V D = 128	(2)
11.2	No				√No	
	P(M and not wa	√reason	(2)			
11.3.1	$P(\text{watching TV}) = \frac{128}{160} = \frac{4}{5} = 0.8 = 80\%$				✓128 ✓160	(2)
						(2)
11.3.2	P(female and not watching TV) = $\frac{12}{160} = \frac{3}{40} = 0.075 = 7.5\%$			= 7,5%	✓ 12 ✓ 160	
						(2) [8]

Question 12 November 2016

 We want to create codes that are even numbers greater than 5000.
 The digit 6 can be used in one of two places in these codes and therefore this presents two scenarios.

therefore this presents two scenarios.

Ons wil kodes kry wat ewe getalle groter as 5000 is. Die syfer 6 kan in twee posisies in die kode gebruik word en twee opsies is moontlik:

CASE 1: The first digit is a 6./Die eerste syfer is 'n 6.

 $= 1 \times 5 \times 4 \times 2 = 40$

6 2 1 × 5 × 4 × 2

Number of codes starting with 6./Getal kodes wat met 6 begin.

CASE 2: The first digit is a 5 or 7./Die eerste syfer is 'n 5 of 7.

5 2 4 6 2 × 5 × 4 × 3

Number of codes not starting with 6./Getal kodes wat nie met 6 $begin = 2 \times 5 \times 4 \times 3 = 120$

Therefore total number of possible codes./Die totale getal $moontlike\ kodes = 40 + 120 = 160$.

✓ 2 × 5 × 4 ×3 ✓ 120

√ 1 × 5 × 4 × 2

√ 160

OR/OF

 $(3 \times 5 \times 4 \times 1) + (3 \times 5 \times 4 \times 1) + (2 \times 5 \times 4 \times 1)$ = 60 + 60 + 40

= 160

✓ (3×5×4×1)

√ (3×5×4×1)
√ (2×5×4×1)

✓ 160

OR/OF

 $(3\times5\times4\times3)$ = $(1\times5\times4\times1)$

= 180 - 20

= 160

✓✓ (3×5×4×3) ✓✓ (1×5×4×1)

✓ 160

[5]

[5]

[5]